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Clinical Scenario

You are the chief medical officer of a large multifacility health care
system. One of the medical staff committees of the organization
reviewed guidelines from the American Academy of Ophthalmol-
ogy recommending annual diabetic retinopathy screening for all
adult patients with diabetes.1 You determine that there is reason-
ably good evidence supporting this recommendation. Patients with
diabetes are prone to developing retinopathy or macular edema
and these diseases may progress to advanced stages before any
symptoms occur. Screening allows for treatment of these diseases
with anti–vascular endothelial growth factor (anti-VEGF) agents
or laser photocoagulation in an early disease stage—before vision
is compromised.

Despite the benefit of screening, your organization has very
limited access to eye care. You have also found an article suggest-
ing that such screening, using an automated system based in pri-
mary care clinics in a health system similar to yours, was effective
for diabetic retinopathy screening.2 In that study, nondilated digi-
tal retinal images were obtained in primary care clinics and auto-
matically analyzed by artificial intelligence software. The system
is proprietary, and you do not know how valid, reliable, and effec-
tive it might be. You perform a web search and find that there are
several automated systems available that screen for diabetic reti-
nopathy. You also find that it is currently believed that systems
based on a machine learning method called convolutional neural
networks (CNNs) seem to have the most promise for detecting
diabetic retinopathy in clinical practice because these systems
have the ability to manage very large amounts of information,
high sensitivity, and high specificity.

A search of PubMed finds some articles that demonstrate the
performance characteristics for automated systems for detecting eye
disease. In one JAMA article, the ability of machine learning using
modern CNNs to detect diabetic retinopathy was shown,3 and in

another, a CNN-based system was developed and validated using
independent samples.4 A third article described using a CNN-
based system in a clinical setting.5

To assess this literature, you use the framework for assessing
articles reporting the results of diagnostic tests (Users’ Guide to the
Medical Literature) (Box 1),6,7 but you are unsure if the develop-
ment of a diagnostic tool using machine learning differs from any
other type of diagnostic test.

This article provides an overview of machine learning and how
to assess the published literature describing the use of machine learn-
ing-based tools to establish medical diagnoses.

T he literature regarding artificial intelligence, machine
learning, or deep learning that supposedly reproduces
human-level performance in clinical tasks is rapidly

expanding (Box 2). Although the machinery used to implement
these techniques is complex, once a machine learning system is
developed, the system should be validated using similar rules for
any system designed to aid clinician decision-making. Once
derived, a model should be validated and its clinical effectiveness
in real-world settings assessed.8

How machine learning methods work and how they are de-
rived and validated should not remain a mystery to clinicians who
rely on them to improve patient care. Just as radiologists under-
stand the fundamental concepts of image acquisition as they re-
view magnetic resonance images, clinicians who rely on machine
learning models should likewise understand the major principles. This
Users’ Guide has 3 goals to facilitate clinicians’ understanding of ma-
chine learning models: (1) to emphasize the importance of proper
machine learning model validation and highlight any differences in
this process relative to the validation of more traditional methods
of statistical model development; (2) to review the basics of ma-
chine learning; and (3) to review how machine learning models
should be implemented in clinical medicine.

Machine learning methods are not new in medicine. An ex-
ample of a simple machine learning model is a rules-based system,9

In recent years, many new clinical diagnostic tools have been developed using complicated
machine learning methods. Irrespective of how a diagnostic tool is derived, it must be
evaluated using a 3-step process of deriving, validating, and establishing the clinical
effectiveness of the tool. Machine learning–based tools should also be assessed for the type
of machine learning model used and its appropriateness for the input data type and data set
size. Machine learning models also generally have additional prespecified settings called
hyperparameters, which must be tuned on a data set independent of the validation set. On
the validation set, the outcome against which the model is evaluated is termed the reference
standard. The rigor of the reference standard must be assessed, such as against a universally
accepted gold standard or expert grading.
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such as the Ottawa ankle rules, which determine the need for ra-
diographs in the evaluation of ankle trauma.10 The Ottawa ankle
rules use a decision tree (eTable 2 in the Supplement). Complex
machine learning methods provide a new way to derive models
and are now possible because of the amount of data available and
advanced computation resources. Regardless of how a model is
built, it must be validated and its clinical effectiveness verified.
Similar to the introduction and use of the Ottawa ankle rule,8

machine learning studies need to have accurate predictions,10,11

be validated in large and heterogeneous populations,10-15 and
demonstrate that their use improves clinical outcomes—ideally
tested in randomized clinical trials in actual clinical practice.16 To
show that a model accurately differentiates one outcome from
another, its discrimination and calibration must be assessed.17,18

Discrimination metrics measure the model’s ability to correctly
distinguish different conditions from one another, such as deter-
mining from a retinal image if diabetic retinopathy is present or
not. Some commonly used descriptive metrics are sensitivity,
specificity, positive predictive values, and negative predictive val-
ues. The full range of possible results using different cut points for
sensitivity and specificity of a model can be visualized by plotting
the receiver operating characteristic curve. This curve can be
summarized by calculating the area under the curve (AUC; also
called the C statistic).19 Calibration determines how well the mod-
el’s predicted probability approximates the actual event probabil-
ity. Calibration is best evaluated by plotting the actual observed
event frequency against the average predicted probability for
each decile of a population, and quantitatively and qualitatively
assessing the deviation from a diagonal line having an intercept of
0 and slope of 1.20 These and other validation considerations are
presented as a checklist in the transparent reporting of a multi-
variable prediction model for individual prognosis or diagnosis
(TRIPOD) guidelines.20

The remainder of this Users’ Guide covers additional consider-
ations specific to machine learning studies, and these consider-
ations are presented as a checklist in eTable 1 (Supplement), using
as examples 2 machine learning studies3,21 and a decision rule study.22

Machine Learning–The Basics
Machine learning methods use mathematical operations to pro-
cess input data, resulting in a prediction. One commonly used ap-
proach for developing a diagnostic tool is logistic regression
(Figure 1A). For each risk factor, logistic regression determines the
relationship between parameters, which are numerical values (Box 2)
and binary clinical outcomes such as the presence or absence of a
disease entity (eg, retinopathy). When the parameters are greater
than 0, the parameter is associated with an increase in risk of the
outcome, and if the parameters are less than 0, the parameter is as-
sociated with reduced risk. Mathematically, the calculation of a di-
agnostic score involves multiplying each risk factor (eg, 1 or 0 for pres-
ence or absence of hypertension) with the corresponding numeric
parameter and summing the results, yielding a probability that the
outcome of interest is present.

Modern machine learning methods use greater numbers of
mathematical operations than traditional regression techniques to
better define complex relationships between risk factors and out-

comes. In deep learning, for example, these operations are often per-
formed in layers. Each layer resembles logistic regression because
layer multiplies information from the previous layer by a set of para-
meters. The first layer often directly processes input from the data
set (Figure 1B). Early layers perform mathematical operations to ex-
tract simple features, later (subsequent) layers build on the simple
features to generate more complex ones, and the final layer uses
these features to make predictions. For example, to distinguish be-
tween categories, including man-made objects and animals, the first
few layers include simple patterns; the subsequent layer combines
these patterns into more complex shapes and textures; and the fi-
nal layers learn to recognize parts of buildings and animals, such as
birds and dogs (Figure 1C).

Development of Machine Learning Models
How Is the Specific Machine Learning Method Chosen?
The name machine learning is used because these methods learn
from examples during a process called training. There are 2 com-
monly used machine learning schemes: supervised learning, and un-
supervised learning (Box 3). In supervised learning, labeled data
(eg, retinal fundus photographs read by expert graders for the pres-
ence or absence of diabetic retinopathy) are used for machine learn-
ing model development. In unsupervised learning, data are not ex-
plicitly labeled and are classified as to what the data might represent
by some mathematical process. An example of this would be to iden-
tify features by clustering data into buckets that are similar to one
another. By using labels, supervised learning generally requires less

Box 1. Evaluating and Applying the Results of Studies
of Diagnostic Testsa

Are the results of the study valid?
Primary guides

Was there an independent, blind comparison with
a reference standard?

Did the patient sample include an appropriate spectrum
of patients to whom the diagnostic test will be applied
in clinical practice?

Was there a completely independent validation set?

Secondary guides
Did the results of the test being evaluated influence
the decision to perform the reference standard?

Were the methods for performing the test described
in sufficient detail to permit replication?

What were the results?
Are likelihood ratios, sensitivity, and specificity for the test results
presented or data necessary for their calculation provided?

Will the results help me in caring for my patients?
Will the reproducibility of the test result and its interpretation
be satisfactory in my setting?

Are the results applicable to my patient?

Will the results change my management?

Will patients be better off as a result of the test?

a Information in this box is based on Jaeschke et al.6,7
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data than unsupervised learning. Thus, most recent machine learn-
ing methods achieving human-level performance that correctly
classify clinical information, such as identifying when retinopathy
is present in a fundus photograph, use supervised learning.3,4,21 Un-
supervised learning is still an active area of research and claims of
human-level performance without the use of any labels in data sets
should be carefully validated.

Even with supervised learning, the type of method used should
be appropriate for the type and amount of input data. A list of meth-
ods that are appropriate for use with various data types and data set
sizes is shown in eTable 2 (Supplement). Generally, more recent
machine learning methods (eg, convolutional neural networks and
recurrent neural networks) work better than traditional methods
(eg, logistic regression or support vector machines) in assessing com-
plex data like medical images or text and large data sets. For ex-
ample, image classification problems, which determine what vi-
sual findings are present in an image, such as detecting diabetic
retinopathy in retinal fundus images, generally require the use of ar-
tificial neural networks (eg, deep learning). Older machine learning
methods require experts to predefine known discriminative fea-
tures and actively help the algorithm identify them. However, im-
ages are represented in a computer as 2-dimensional grids of nu-
merical pixel values, and it is very difficult to describe relevant
features as patterns of numbers. For example, how does one de-
scribe in grids of numbers the characteristic features of prolifera-
tive diabetic retinopathy? By being shown a large number of ex-
amples, artificial neural networks automatically learn from executing
complex mathematical functions that describe discriminative vi-
sual features and use the presence and extent of these features to
interpret the image.24-26 Conversely, simpler machine learning sys-
tems (eg, logistic regression) that use limited input variables such
as age and hypertension status have less information with which to
predict an outcome.

Box 2. Glossary of General Terminology Associated
With Machine Learning Methods

Feature: Features are the input variables to a machine learning
model. For example, when developing a model predicting stroke
risk, a feature would be a patient’s height or weight. Features can be
processed before they are entered into a model, such as combining
height and weight into a body mass index. For an image, a feature
may be some component of the image, such as an eye or a nose,
when developing a facial recognition machine learning system.

Hyperparameter: Hyperparameters are parameters that are estab-
lished before a model is trained and remain fixed through the train-
ing process. The hyperparameters generally affect the parameters
that are learned during training and can have a large influence on
the final accuracy. One of the difficulties in machine learning is in
determining sets of hyperparameters that optimize the model fit.

Label: The label identifies what a collection of data (the model input)
represents. For a stroke model, it would be stroke present or absent.
When developing a machine learning system to identify diabetic
retinopathy, the label for each fundus image would be present or
absent, as determined by experts in interpreting such images.

Machine Learning, Artificial Intelligence, Deep Learning: Artificial
intelligence is a loosely defined concept describing automated
systems that can perform tasks considered to require “intelli-
gence.” Machine learning refers to the process of developing sys-
tems with the ability to learn from and make predictions using
data. For example, a machine learning model can process an input
(such as a retinal fundus photograph) and produce an output
(such as the classification of the image showing that proliferative
diabetic retinopathy is present). Deep learning is a more specific
group of machine learning methods that uses many layers of
arithmetic operations.25,40

Model, Algorithm: In the machine learning setting, model and al-
gorithm are frequently used interchangeably to refer to the final
ready-to-use machine learning method. These terms refer to the
steps taken by the machine to assess input data and make a deter-
mination about what is shown in the data.

Overfitting: Overfitting is a scenario in which a machine learning
model is trained to predict the training data too well, such that it
does not generalize to new data sets. In theory, any set of data can
be fit with a mathematical model if large numbers of parameters
are entered into a mathematical model. This overfitting can occur
even if there is no logical relationship between the data and the
outcome. For example, a reasonably good fit can be obtained
using regression to determine the relationship between age, cho-
lesterol, and sex, to stroke because each of these variables has a
physiological relationship with the development of atherosclerosis
and subsequent stoke. The mathematical model relating these risk
factors and stroke can have a better fit if more parameters than
these are entered into the model, even if those parameters have
nothing to do with stroke. The resulting model may not perform
well clinically if its fit relies on these extra variables. When the
model is applied to a different data set than the one on which it
was developed, its predictive ability may fail.

Parameter: Parameters are the internal values of a machine learning
model that are derived based on the training data. For example, the
parameters in logistic regression include the weights that are multi-
plied with each input variable as part of the regression equation.
If a logistic-regression model were developed to assess the need for
a radiograph to evaluate an ankle trauma case, input features may
include the presence of bone tenderness at anatomic sites A and B.

(continued)

Box 2. (continued)

The parameter associated with each site would be greater than 0,
indicating a higher likelihood that radiographs are needed to rule out
fracture. The overall score would be related to multiplying the pres-
ence or absence (1 or 0) of tenderness at A and B with their respec-
tive parameters. The values of the parameters are learned during a
training process to optimize the fit between the available data and
the machine learning model outputs.

Reference Standard: For a diagnostic test, a reference standard is
the reference against which the proposed method is compared.
The reference standard is often a widely accepted test or gold
standard for the diagnosis, but it can also be based on diagnoses
provided by expert clinicians.

Training: The process of adjusting model parameters in a machine
learning model to best match the model output with the reference
standard label in the training set.

Tuning: The process of adjusting the hyperparameters of a trained
model to increase the model’s fit to the tuning set. When tuning a
machine learning model, hyperparameters are repeatedly ad-
justed, each time training a new machine learning model on the
training set and evaluating that machine learning model on the
tuning set. The optimal hyperparameter configuration is typically
the configuration that leads to the best tuning set accuracy.
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How Much Data Are Required for Recent
Machine Learning Methods?
For simple machine learning methods such as regression tech-
niques, at least 5 to 10 outcome events per input variable have been
recommended.27 Developing accurate deep-learning models that
have millions of parameters frequently require many fewer events
per parameter because of various regularization techniques that are
commonly used simultaneously (Box 3). Regularization is a tech-
nique similar to curve smoothing. One regularization method is called
parameter regularization, which essentially smooths the fit of the
model to avoid overfitting to any given data set. Overfitting occurs
when the model perfectly fits data to the available parameters but
not in a way that has any relationship to the clinical outcome that is
being modeled. One characteristic of mathematical modeling is that
a perfect fit relating data to an outcome can be achieved if a suffi-
ciently large number of parameters are available to fit the data.
A method called early stopping achieves similar results to regular-
izing the parameters by stopping the training process before the
model overfits to the data set. Another method of regularization is
to initialize the parameters from a deep neural network that has al-
ready been trained on another task. By avoiding the need to start
anew, the network can learn more quickly and use fewer examples.
Yet another technique increases the effective data set size by aug-
menting the model with data that have been artificially modified,
such as by rotating an image slightly or changing the overall bright-
ness of an image. Artificial modification of data is a way of teaching
the model that the exact orientation or brightness does not matter
in determining what visual finding the model is attempting to iden-
tify. Ensembling combines learning from multiple models by aver-
aging their predictions, which improves the accuracy of the final

model (Box 3). Though these regularization techniques are helpful
and indeed essential for modern machine learning methods, tens
of thousands of example data such as retinal images may still be re-
quired in the training set to attain high accuracy.3

How Does Regularization Influence Machine Learning
Model Development?
Most regularization techniques, such as those described in the pre-
vious section, influence the learned parameters of the machine learn-
ing model. However, the use of these techniques involves setting
additional hyperparameters. Hyperparameters are analogous to ad-
justing knobs of an amplifier to fine-tune the bass and treble of an
audio production—tuning the knobs affects the final result. In ma-
chine learning, if randomness is controlled for in the training pro-
cess, fixing the hyperparameter settings results in complete deter-
mination of the final numerical values of the learned parameters.
However, changing the hyperparameters and training a new ma-
chine learning model results in different values of the learned para-
meters (Box 3). Because hyperparameters have a large effect on the
model performance, manually tuning these hyperparameters is an
important part of machine learning studies. This tuning process gen-
erally requires the use of a tuning set (often a subset of the devel-
opment data set) that is independent of the final validation set. This
is done by repeatedly trying different hyperparameter configura-
tions, training the machine learning model on the training set, and
evaluating the machine learning model on the tuning set.

Caution should be exercised during the training and tuning of
recent machine learning models. For example, a system can be tuned
to 100% accuracy on the training set but may only have random ac-
curacy on the validation set, indicating the machine learning model’s

Figure 1. Comparison of How Traditional Decision Rules Work vs Recent Machine Learning Methods

A Logistic regression model

Patient clinical data

Age >75 Female Prior stroke ...

Manual risk
factor extraction

Integrated risk
estimate

w1 w2 w3

Multiply risk factor by weights, w;
each weight indicates relative importance
Eg, 78-year-old male with prior stroke:
Risk score = 1 × w1 + 0 × w2 + 1 × w3 + ...

B Deep learning model

Medical image

Feature extraction layer 1

Feature extraction layer 2

Feature extraction layer 3

Feature extraction layer 4

...

Feature extraction layer n

Integrated risk estimate

Input values
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the image or output 
from previous layers

Each layer of computation uses
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operations to extract features 
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3 9 6
1 6 7
3 2 9

Output values
Generated by 
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2 1 8

3 7
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5 9
1 8

2 4
3 5

w1 w2 w3

C Examples of features extracted 
at different layers

1

2

3

4

5

A, Decision rules and machine learning methods both use mathematical
functions to process input data and make a prediction. Many decision rules are
based on multiplying risk factors with weights that represent the relative
importance of each risk factor. The weights are frequently determined by
training a logistic-regression model on data from a patient cohort. For ease of
use without a calculator, these weights can be converted to point scores, and
the sum of the point scores can be looked up in a risk table. B, Instead of a single
set of multiplications, more sophisticated machine learning methods can

leverage millions or billions of multiplications and other mathematical
operations to extract descriptive features of complex input data, such as
images. The weights or parameters of these operations are also derived using
the data. C, Each layer can be inspected and visualized for having an intuitive
understanding of the patterns being identified.23 Although this example
focuses on the specific problem of image interpretation, the general concept of
learning complex features through many layers of mathematical operations is
applicable to many recent methods.
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complete memorization of the training data when a tuning set is not
used.28 Though clinical decision rules are developed using one data
set for derivation and one or more unique data sets for validation
(Figure 2A; see Box 3 for an explanation of the frequently inconsis-
tent data set terminology),18 machine learning, by contrast, typi-
cally requires 2 data sets for the development stage alone: a train-
ing set, from which to learn parameters and a tuning set, to adjust
hyperparameters (Figure 2B). When the training and tuning sets are
small, randomness in the partitioning can reduce the reproducibil-
ity of the tuning process. To improve the reproducibility, tuning may
be repeated using multiple random partitions of training and tun-
ing sets within the development set (cross-validation; Box 3). If nei-
ther a tuning set nor cross-validation is described in a publication de-
scribing the results of an machine learning process, the reader should

Box 3. Glossary of Terms Associated With Machine Learning
Methods: Types of Machine Learning Schemes, Data Set Names,
and Regularization

Types of Machine Learning Schemes
Supervised Learning: Training a model with input data and its cor-
responding labels. The machine learning model attempts to deter-
mine a relationship between the input data and the label associ-
ated with the data. Examples include developing a machine
learning system that can take a retinal image (input) and identify
whether it contains retinopathy (the label).

Unsupervised Learning: Training a model to identify patterns
within the input data without the use of labels. The most common
unsupervised learning method is clustering, which groups data
into similar subgroups.

Data Set Names
Development Set: A data set used for developing the machine learn-
ing model, frequently further split into the training and tuning sets.

K-fold Cross-Validation: This is a technique that uses multiple
splits within the development set to reduce the effects of random-
ness of the split. For example, if k = 2, the development set is split
evenly into A and B. Two models are developed: one trained using
A and tuned on B, and one trained using B and tuned on A. The
cross-validated evaluation is usually the average of the 2 perfor-
mance estimates using A and B. An independent validation set
should be used to evaluate the performance of the final model
trained on the entire development set. A leave-one-out cross vali-
dation is when k is the total number of data points in the data set.a

Training Set: A subset of the development set that is used to de-
velop the machine learning model where training is performed by
updating the model parameters iteratively until the model opti-
mally fits the data.

Tuning Set: A subset of the development set that is used to tune
the hyperparameters of a model. In the machine learning commu-
nity, this may be referred to as the validation set. In this guide, we
will use tuning for consistency, and in medical research, a model
must be validated using a data set that is completely independent
of the training or tuning set.

Validation Set: A data set that is independent from the training or
tuning set. Validation sets are used to evaluate the model perfor-
mance before a machine learning model can be applied clinically.
The validation set should not be used to train or tune the machine
learning model, including hyperparameters or choice of machine
learning method. In the machine learning community, the valida-
tion set may be referred to as the test, holdout, or evaluation set.

Regularizationb

Data Augmentation: Computationally modifies the input data dur-
ing the training process to increase the effective data set size and
improve both overfitting and final accuracy. This is particularly
helpful for neural networks applied to images where the image
orientation, scale/magnification, color, brightness, saturation, con-
trast, and other aspects can be extensively modified. For example,
when a machine learning system is trying to identify a nose in a
facial recognition system, it does not matter where the nose is in
the image or in what direction the nose is facing. To help the sys-
tem learn what a nose looks like, the same image may be used sev-
eral times, rotated at various angles or otherwise altered to facili-
tate recognition of discriminative visual features that are
independent of these modifications.

(continued)

Box 3. (continued)

Early Stopping: This technique is most relevant for neural net-
works, where training is generally done by gradual adjustment of
the parameters. To help avoid overfitting, the training process is
terminated before the model fits too well to the training set. Typi-
cally, performance on the tuning set is monitored throughout the
training process, and early stopping is done at the point that maxi-
mizes tuning set performance.

Ensemble: The technique of combining multiple outputs of ma-
chine learning models to improve stability of the final prediction
and hence, overall performance by a few percents. This can be
done by developing multiple machine learning models and averag-
ing their outputs given the same input data. Another method is to
run the same machine learning model on multiple input images,
which can be multiple images from the same patient (such as fun-
dus images from both eyes) or the same image after artificial per-
turbations (such as those used for data augmentation).

Fine-Tuning, Preinitialization, Warm Start: This technique uses a
machine learning model that was previously trained on another
data set to initialize the parameters of the desired machine learn-
ing model. This can help develop accurate neural networks with
smaller data sets. Although more helpful when the other data set
is similar in terms of data type or prediction task, the use of unre-
lated data sets can still be helpful.

Parameter Regularization: Helps to prevent parameters from be-
coming too large (shrinkage) and thus overfitting. Ways of doing
this include L1 (also called lasso) and L2 (also called ridge), and the
combination (elastic net). L1 has the advantage of incorporating
feature selection, which is helpful in determining the most impor-
tant input features. For neural networks, another parameter regu-
larization technique is termed weight decay, which prevents the
parameters from becoming too large by subtracting the weights
by a predetermined factor.

a Note that cross-validation can also be used by splitting the entire data set
into multiple development sets and validation sets. The reader should be
aware that this procedure evaluates the average performance of many
machine learning models. Afterwards, the final machine learning model
that is trained using the entirety of the data set will require further
validation using an independent data set.

b Techniques to reduce overfitting, such as by reducing the number of
parameters in a model or avoiding an overly precise fit of the model to the
data set. Smoothing a noisy curve is an example of regularization and can
be achieved in a regression analysis by reducing extremely high parameter
values or setting the parameters of unimportant features to 0 in the
regression equation.
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assess whether the validation set was inadvertently used for tun-
ing hyperparameters. A seemingly benign choice is that of select-
ing an operating point, also called a threshold, cut point, or cutoff.
For example, if the output of machine learning is above some cut-
off value, the feature the machine learning system is trying to iden-
tify is considered to be present. Cutoff selection using the valida-
tion set may hide calibration issues, such as when a machine learning
model is trained using an enriched data set that has half of all its data
containing the finding of interest. If used without further modifica-
tion, the model may result in false-positive output when validated
on a general patient population with only a small number of pa-
tients having the clinical entity the machine learning system is try-
ing to identify.

Validation of Machine Learning Models
Is the Reference Standard High Quality?
Because many machine learning studies intend to demonstrate com-
parable performance of a clinically relevant task to clinicians, such
as reading a radiograph or pathology slide, a key consideration is the
quality of the reference standard. However, determination of the ref-
erence standard often requires subjective clinical judgement, which
results in intrarater and interrater variability. This variability can be
reduced by adjudication by a panel of experienced experts, for ex-
ample, ensuring that retinal fundus photographs are graded and ad-
judicated by a panel of experienced retina specialists. Krause et al29

showed the effect the quality of reference standard had on the re-
liability of the evaluation metrics. Using the majority vote of 3 reti-
nal specialists as the reference standard, their machine learning
model yielded an error (measured by 1−AUC) of 6.6%. However,
when evaluated against a reference standard defined by the adju-
dicated grades from 3 specialists, error by the same machine learn-
ing model decreased to 4.6%,29 a 30% relative reduction in errors
(6.6%-4.6%). This difference in measured error rate was due solely
to validating the machine learning model against a more rigorous ref-
erence standard (adjudicated vs majority vote). Thus, a high-
quality reference standard is especially important for precise esti-
mation of model and human performance to support model
performance claims. To avoid bias, the reference standard must be
determined independently—the clinicians grading images should be
blinded to the machine learning predictions. These considerations
are especially critical in studies that propose to use machine learn-
ing models to expand access to health care services; even a small
difference in model performance can potentially affect a large num-
ber of patients.

Are the Results Unexpected?
If the study design is high quality, with respect to neither training
nor tuning being performed on the validation set, the final consid-
eration is a qualitative assessment of whether the reported perfor-
mance is too good to be true on an absolute scale. Given sufficient
high-quality training data and appropriate tuning, recent machine
learning models can generally classify images with performance

Figure 2. Comparison of the Development and Validation of a Decision Rule vs a Machine Learning Model

Development set

Development sets

Training set

Validation sets

A Decision-rule model

B Machine learning model

Input variables
TIMI 11B
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80% Development set
102 540 images

Labels

Machine learning model
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Machine learning 
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Evaluation Performance 
metrics

Update hyperparameters

A, A decision rule typically has a small number of parameters (eg, 5-10), such as
the weights or points for each risk factor. These parameters are generally
derived using a single development set and evaluated on 1 or more validation
sets. B, Although the parameters of a machine learning model are similarly

derived from the data, there are typically additional hyperparameters, such as
learning rate, that affect the final derived parameters. These hyperparameters
need to be tuned using a tuning set that is independent of the validation set to
avoid overfitting.
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comparable with humans26 (eg, accurate diagnosis of diabetic reti-
nopathy on par with retinal specialists29 and highly sensitive detec-
tion of individual tumors in large pathology images).21 Notably, in
these situations, the diagnostic performance of clinicians is limited
by interrater and intrarater variability that results from factors such
as subjectivity of image interpretation (eg, assessment of lesion size
or severity), fatigue from grading many images or large images, and
particularly in real clinical scenarios, limited time to assess the im-
age. By contrast, machine learning methods have 2 major advan-
tages: absolute consistency in performance without variability due
to fatigue or external factors and by extension, the ability to exhaus-
tively review every part of large images. More generally, the numeri-
cal precision of computer approaches may be advantageous for track-
ing subtle changes such as lesion size over time.

When machine learning results seem too good to be true, re-
call that machine learning methods can only be as good as the in-
formation in the training set. Therefore, machine learning methods
should not be able to exceed the performance of extremely careful
and experienced clinicians who have been given sufficient time to
make a decision. However, because machines do not fatigue like
people do, machines can outperform clinicians because they can rig-
orously examine large amounts of data and consistently arrive at the
same result, whereas a clinician might overlook something.

There have been unexpected claims such as detecting previ-
ously unknown correlations, for example, the association between
the cardiovascular risk factors of age and sex and retinal image
findings.30,31 In this instance, the machine learning tool correctly
identified the self-reported sex of patients with a near-perfect AUC
of 0.97. Because clear sex-specific anatomic differences had not been
previously reported in retinal fundus photographs, this finding was
particularly surprising. Independent researchers validated these re-
sults in another population,31 increasing the confidence in the ro-
bustness of the machine learning model to find nuances in images
that were previously not recognized by humans. When new unex-
pected associations are found by machine learning systems, the new

Box 4. Using Convolutional Neural Networks to Detect Diabetic
Retinopathy—Evaluating the Resultsa

How serious is the risk of bias?
Primary guides

Was there an independent, blind comparison with a reference
standard?

To develop and test a machine learning algorithm, Gulshan
et al,3 worked with 54 ophthalmologists who were licensed
in the United States or were final year (postgraduate year
4) ophthalmology residents to grade all the images used in
their study. The graders were given a 19-image test to en-
sure they were proficient at reading retinal images, and as
the study progressed, the graders’ intragrader and inter-
grader consistency was determined. The graders then used
a software system that presented the images to be graded
along with a scale regarding the image quality and, if the
image was of sufficiently high quality, the grade for diabetic
retinopathy or diabetic macular edema. Each image in the
development set was graded 3 to 7 times.

Did the patient sample include an appropriate spectrum
of patients to whom the diagnostic test will be applied
in clinical practice?

The data sets used in the study by Gulshan et al3 were
derived from hospitals and from clinics using the EyePACS
system. Three eye hospitals in India contributed images
(Aravind Eye Hospital, Sankara Nethralaya, and Narayana
Nethralaya). In the United States, EyePACS was used.
EyePACS clinics serve higher percentages of the Latino
populations such that the EyePACS data set was enriched
for Hispanic patients (≈55%), with white, black, and Asian
patients each comprising approximately 5% to 10% of the
population. A variety of different camera systems were
used to obtain the images. The development set consisted
of 128 175 macula-centered images of which 33 894 were
from India and the rest from EyePACS sites. Thus, the reti-
nopathy system developed by Gulshan et al3may not gen-
eralize to all populations and would need to be tested
against non-Indian, non-Hispanic patients.

Was there a completely independent validation data set (and
for machine learning prediction models was tuning reported)?

In the study by Gulshan et al,3 80% of the data were used
to optimize the machine learning algorithm parameters,
and 20% were used for tuning. The tuning set was used
to determine when to stop the training process by
terminating it when the area under the curve for the
algorithm’s performance reached a peak in the separate
tuning data set.

Initially, Gulshan et al3 used a subset of the development
set of images from EyePACS for a validation study. This was
not optimal since it is almost ensured in any modeling
study that a statistical model or, in this case, a model de-
rived by machine learning, will yield a very good fit from
data derived from the same source from which the deriva-
tion data came. From a statistical and mathematical per-
spective, fitting data derived from the same population,
irrespective of how it is sampled, is exactly the same pro-
cess. For these reasons, split samples or cross-validation
methods do not actually reflect true validation of any
model. Thus, Gulshan et al,3 also tested their machine
learning system against a completely independent data set,
the Messidor-2 publicly available fundus image database.

(continued)

Box 4. (continued)

Gulshan et al3 used the most reliable graders from the deri-
vation process to grade the validation images. Like the deri-
vation process, each image in the validation set was graded
multiple times (7 times on average).

Secondary guides
Did the results of the test being evaluated influence the deci-
sion to perform the reference standard?

Grading of the data sets used in the study by Gulshan et al3

for developing the reference and validation studies was
performed independently and for the purposes of the
study and was not in any way influenced by the patient’s
clinical care.

Were the methods for performing the test described in suffi-
cient detail to permit replication?

The methods described for obtaining the data sets and
how they were analyzed by Gulshan et al3 were extensively
described and could be repeated by other investigators.

a Using convolutional neural networks to detect diabetic retinopathy is based
on assessment of Gulshan et al.3 Information in this box is based on
Jaeschke et al.6,7
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observations should be validated in additional patient cohorts to en-
sure that the results are not due to artifacts in the machine learning
system, confounding factors, or flaws in the study design.

How to Detect Overly Optimistic Estimation
of Model Performance
Readers should be aware of the potential of machine learning to over-
fit to the development set by learning patterns that appear only in
that data set or by learning parameters that are too specific to the
development set. This overfitting will manifest as low accuracy on
new data sets, suggesting a lack of generalizability to other data sets.
One way to detect overfitting is to compare the performance of the
machine learning model in the tuning and validation sets, if both are
reported. A large gap in performance between the tuning and vali-
dation sets may be indicative of overfitting to the tuning set. How-
ever, a variety of other factors, such as differences in patient popu-
lations (eg, age or disease subtype) or data source (eg, different
imaging instruments or configurations) may also be responsible.
As such, assessment of overfitting is an evaluation involving both
technical machine learning expertise (eg, qualitative assessment of
tuning-validation performance gap) and clinical intuition (eg, quali-
tative assessment of patient population differences between de-
velopment and validation sets). Thus, a discussion with an experi-
enced machine learning scientist about any flaws in the machine
learning development may be helpful, in addition to a clinical as-
sessment of the validation procedure.

Are Machine Learning Model Predictions Repeatable
and Reproducible?
Repeatability and reproducibility are 2 critical aspects of measur-
ing the consistency of machine learning model performance. When
given the same image twice, the outputs of a given machine learn-
ing model should be identical. In the case of repeat imaging how-
ever, despite visual similarity, subtle changes in the numerical pixel

Box 5. Using Convolutional Neural Networks to Detect Diabetic
Retinopathy—Applying the Resultsa

What were the results?
Are likelihood ratios, sensitivity, and specificity for the test re-
sults presented or data necessary for their calculation provided?

When the machine learning algorithm was optimized for high
specificity, the specificity, when tested against the validation
EyePACS data set, was 98%, and the sensitivity was 90%.
The sensitivity for the Messidor-2 validation set was 87% and
the specificity was 99%, showing the importance of validat-
ing any model against a completely independent data set.
The independent validation set will have patients with differ-
ent characteristics from those included in the derivation data
set, resulting in a more realistic assessment of how the ma-
chine learning model will perform in actual clinical practice.

When the machine learning retinopathy algorithm was opti-
mized for high sensitivity and tested against the EyePACS
validation set, the sensitivity was 98% and the specificity was
93%. For the Messidor-2 validation set, sensitivity was 96%
and specificity was 94%.

Will the results help me in caring for patients?
Will the reproducibility of the test result and its interpretation
be satisfactory in my setting?

Gulshan et al,3 developed a machine learning algorithm that
when optimized for high specificity, proved to have high sen-
sitivity and specificity when tested against a validation set
developed from France. These results were promising given
that the machine learning algorithm was derived from very
large numbers of images in the derivation and validation sets.
Because of the large numbers, the algorithm should consis-
tently identify retinopathy findings on fundus photographs.
However, the algorithm may not perform as well when im-
ages are derived from different photographic systems and
from different patient populations than those used in deriva-
tion and validation sets.

In another study about independently developing a machine
learning algorithm to detect diabetic retinopathy, the sensi-
tivity was 91% and the specificity was 92% for detecting reti-
nopathy in a multiethnic cohort of patients, suggesting that
machine learning systems for detecting diabetic retinopathy
are probably applicable to patient cohorts from a diverse
range of racial and ethnic backgrounds.4

In another study Gulshan et al3 used for developing the ma-
chine learning retinopathy screening algorithm (setting was 2
hospitals in India: Aravind Eye Hospital and Sankara Nethra-
laya), the automated retinopathy system performed reason-
ably well. Trained graders had a sensitivity of 73% to 90%
and specificity ranged from 84% to 99%, as compared with
grading by an expert retinal specialist who evaluated the
same images. The automated diabetic retinopathy system’s
sensitivity was 89% at Aravind Eye Hospital and 92% at San-
kara Nethralaya; the system’s specificity was 92% at Aravind
Eye Hospital and 95% at Sankara Nethralaya.3

Collectively, these studies show that an automated diabetic
retinopathy screening system could work as effectively as
having trained graders read fundus photography images
when the algorithm was developed with the same patient
population. It remains to be seen if this same algorithm will be
as effective in patient populations other than those for which
it was developed.

(continued)

Box 5. (continued)

Are the results applicable to my patient?
Unless patients have the same characteristics as those in the
populations for which this particular algorithm was devel-
oped, it may not perform as well as was reported in the litera-
ture reviewed.

Will the results change my management?
Because the automated diabetic retinopathy screening
system has not been validated in a population like the one
you are managing, you cannot conclude it will change
management.

Will patients be better off as a result of the test?
In theory, because many more patients require retinopathy
screening than are resources available to achieve this screen-
ing, implementation of an automated system could benefit
your patients. Whereas, the currently available systems may
not work for your patient population, you conclude that if one
could be validated against your patients, implementation of
such a system might benefit them.

a Using convolutional neural networks to detect diabetic retinopathy is based
on assessment of Gulshan et al.3 Information in this box is based on
Jaeschke et al.6,7
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values will alter the machine learning predictions. Before they are
used clinically, the machine learning predictions to slight changes
in pixel values between images taken via the same imaging hard-
ware and protocol should be measured (ie, repeatability). More cru-
cially, the machine learning predictions to differences in imaging
hardware, operators, and protocol between institutions should be
quantified (ie, reproducibility). In other words, outside of con-
trolled laboratory conditions, there needs to be understanding about
real-world conditions that affect the performance of machine learn-
ing models.

Considerations for Clinical Implementation
For What Purpose Can the Machine Learning Model Be Used?
Similar to how a diagnostic test can be used (in principle) for triag-
ing, screening, or diagnostic purposes, a machine learning model,
developed to perform a specific task, can be used for several pur-
poses. For example, in a diagnostic application, machine learning may
be helpful in 3 distinct phases: prediagnosis, peridiagnosis, and post-
diagnosis. Before a diagnosis is made, the machine learning model
may help prescreen patients to select only the highest-risk pa-
tients for further evaluation, reducing clinical workload.32,33 In this
manner, machine learning may expand the access of health care to
underserved patient populations, such as by increasing availability
of diabetic retinopathy screening to patients with diabetes in rural
areas. During diagnosis, a machine learning model might improve
the accuracy or efficiency of diagnosis by assisting clinicians with im-
age review in real time for faster or more consistent detection of ab-
normalities in radiology, ophthalmology, or pathology images.34-36

After diagnosis, machine learning models can be used for quality
improvement by overreading images to detect diagnostic errors be-
fore patient care is affected.37,38 Notably, regardless of exact pur-
pose, the combination of evaluation by clinicians and machine learn-
ing can be more efficient and accurate than either alone.34 Therefore
a further worthwhile consideration is how to best leverage the
complementary strengths of machine learning methods and clini-
cian gestalt and experience.

In particular, the different uses influence how machine learn-
ing predictions should be presented to clinicians, also termed user
interface design. For example, for detection of diabetic retinopa-
thy, showing additional information about the part of the image that
the machine learning model used to make predictions can be espe-
cially helpful for retina specialists.35 In another example, for detec-
tion of metastatic breast tumors in sentinel lymph node biopsy, show-
ing the raw predictions of each region of the image slowed
pathologists down due to too much information. Conversely, high-
lighting only the most suspicious regions substantially expedited im-
age review.34 More generally, even simpler aspects, such as whether
to consider the machine learning–predicted probabilities as op-
posed to a final classification like referable diabetic retinopathy, will
require careful thought and clinical studies to measure the effect on
diagnostic variability and patient care.

How Can the Machine Learning Model Be Implemented
in Clinical Practice?
Unlike decision rules, the implementation of machine learning mod-
els into routine clinical workflows may be more complicated.

Whereas decision rules can be applied by consulting a risk table, cal-
culator, or even mental counting of risk factors, machine learning
methods require computer programs. Because computers and elec-
tronic health records are now commonplace in routine clinical set-
tings, the need for computers is not a barrier. However, whether the
machine learning computation is performed on a local computer or
remotely in the “cloud” has implications for patient privacy, work-
flow integration, and maintenance of these programs, and re-
quires careful thought.

Measuring and Monitoring Clinical Effect
Even if a machine learning model has been thoroughly validated in
different studies and the logistical, technical, and regulatory hurdles
have been overcome for integration into the clinical workflow,
the system still requires further research to measure the system’s
clinical effectiveness. Several aspects of clinical effectiveness can
be measured and tracked, including patient outcomes and costs.
More subtly, adverse effects on clinician workloads and behaviors
must be assessed to avoid increasing fatigue that might result from
clinicians needing to respond to false-positive machine learning re-
ports that could blunt human responsiveness to real problems iden-
tified by machine learning systems. In addition, machine learning
models may result in clinician overreliance on automated systems,
resulting in errors caused by faulty machine learning processes.
The overall usefulness and safety of machine learning systems is ide-
ally assessed through large randomized controlled trials, such as
those that were performed to evaluate the Ottawa ankle rules.16

However, like after-market surveillance for drugs, continued moni-
toring of machine learning systems is essential to help detect
unexpected problems that may arise from changes in practice or pa-
tient populations.

Updating the Machine Learning Model Over Time
Machine learning models differ from decision rules because the ac-
curacy of machine learning models can be improved over time, as
exemplified by an improvement in diabetic retinopathy grading from
being comparable with ophthalmologists3 to being on par with retina
specialists.29 These improvements were due to better machine learn-
ing methods and data such as adjudicated labels from retina spe-
cialists. In addition, an increase in data set size also substantially im-
proves machine learning model performance.3 Thus, in addition to
updating the machine learning model over time, as a response to
changes in practice or patient population, ongoing data collection
will lead to improved machine learning models, though with gradu-
ally diminishing returns. Partially due to recognition that updates
to improve accuracy of machine learning models can increase the
quality of care, the US Food and Drug Administration is testing
the Digital Health Software Precertification (Pre-Cert) Program to
facilitate faster approvals where appropriate.39

Resolving the Clinical Scenario—Using the Guide
Machine learning is a powerful new tool that greatly expands the abil-
ity to understand the relationship between data and some clinical
features such as retinopathy lesions on a fundus photograph. Even
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though machine learning greatly expands the ability to analyze data,
its implementation in clinical practice should follow the same rules
that previously existed for assessing diagnostic tests (Box 1).6,7 The
chief medical officer seeking to assess the literature on using ma-
chine learning to diagnose retinopathy finds 2 articles on the topic.
The first article developed and validated a machine learning sys-
tem to automatically read retinal photographs to determine if reti-
nopathy was present.3 In Box 4 and in Box 5, we evaluate the ar-
ticle by Gulshan et al3 using the Users’ Guide to Assessment of
Diagnostic Studies.6,7

Conclusions
Machine learning is not new in medicine and has been used produc-
tively in simpler incarnations as clinical decision rules. Clinicians

should verify the validity and impact of machine learning methods
just like any other diagnostic or prognostic tool. Readers of studies
reporting the results of machine learning systems should assess the
most crucial elements of machine learning model validation, such
as whether the study design over-represents model performance
through inappropriate hyperparameter tuning or a poor-quality ref-
erence standard. Crucially, the machine learning model has to be vali-
dated on an independent data set not used for training or tuning the
model. Finally, clinical gestalt plays a crucial role in evaluating whether
the results are believable: because one of the biggest strengths of
machine learning models is consistency and the lack of fatigue, a use-
ful check for believable machine learning results is whether an ex-
perienced expert could reproduce the claimed accuracy given an
abundance of time. Results that substantially exceed what even such
a hypothetical expert is capable of should be scrutinized and vali-
dated carefully.
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