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a b s t r a c t

We introduce an algorithm for learning patient-specific models from clinical data to predict outcomes.
Patient-specific models are influenced by the particular history, symptoms, laboratory results, and other
features of the patient case at hand, in contrast to the commonly used population-wide models that are
constructed to perform well on average on all future cases. The patient-specific algorithm uses Markov
blanket (MB) models, carries out Bayesian model averaging over a set of models to predict the outcome
for the patient case at hand, and employs a patient-specific heuristic to locate a set of suitable models to
average over. We evaluate the utility of using a local structure representation for the conditional proba-
bility distributions in the MB models that captures additional independence relations among the vari-
ables compared to the typically used representation that captures only the global structure among the
variables. In addition, we compare the performance of Bayesian model averaging to that of model selec-
tion. The patient-specific algorithm and its variants were evaluated on two clinical datasets for two out-
comes. Our results provide support that the performance of an algorithm for learning patient-specific
models can be improved by using a local structure representation for MB models and by performing
Bayesian model averaging.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction a single model from databases of patient cases, which is then ap-
Critical activities in clinical care like risk assessment, diagnosis,
and prognosis, entail making predictions in individuals under uncer-
tainty [1,2]. The better these predictions can be performed, the bet-
ter the decisions and the ensuing outcomes are likely to be both for
the individual and for society at large. Even modest improvements in
predictive performance can have significant impact on healthcare in
terms of patient care, outcomes and costs. For example, in [3] the
authors examine conditions in which the improved prediction of
pneumonia outcomes would be expected to reduce hospital admis-
sions of pneumonia patients by one percent, without any expected
decrease in the clinical quality of care. Just such a one-percent reduc-
tion is estimated to save approximately 90 million dollars (in 1994
dollars) in healthcare costs per year in the United States. Thus, find-
ing ways to improve predictive performance of current modeling
techniques is an important problem.

Many of the commonly used predictive algorithms, such as lo-
gistic regression, neural networks, and Bayesian networks, learn
ll rights reserved.
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plied to predict outcomes for any future patient case. We call such
a model a population-wide model because it is intended to be ap-
plied to an entire population of future cases. Recent research has
shown, however, that learning models that are specific to the par-
ticular features of a given patient case can improve predictive per-
formance [4]. We call such a model a patient-specific model since it
is specialized to the particular features of the patient case at hand,
and is optimized to predict especially well for that case. Thus, a
population-wide model is optimized to have good predictive per-
formance on average on all future cases, while a patient-specific
model is optimized to perform well on a specific patient case.

In this paper, we introduce and evaluate a patient-specific algo-
rithm that learns patient-specific models to predict outcomes of
interest in clinical datasets. Specifically, the algorithm learns
Bayesian network models represented using local structures, car-
ries out Bayesian model averaging over a set of models to predict
the outcome of interest for the patient case at hand, and employs
a patient-specific heuristic to locate a set of suitable models to
average over. Bayesian network algorithms typically use a global
representation to represent the model structure. The patient-spe-
cific algorithm uses a local representation (specifically, decision
graphs) that provides a richer Bayesian network model space than
the global representation. For a set of variables, there are many
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more Bayesian networks that can be constructed from them when
represented using local structures than when represented using
global structures; thus the space of local structures is richer than
the space of global structures. As we discuss in detail, the richer
model space of local structures represent relationships among vari-
ables that are sensitive to the values of those variables. Thus, the
modeled relationships can be specific to the values of the variables
for the current patient case at hand.

Many algorithms that learn predictive models from data, includ-
ing those that learn Bayesian network models, perform model selec-
tion wherein a single good model is identified which is then applied
to predict outcomes for any future patient case. However, given fi-
nite data, there is uncertainty in choosing one model to the exclusion
of all others, and this can be especially problematic when the se-
lected model is one of several distinct models that all summarize
the data more or less equally well. One approach to dealing with
the uncertainty in model selection is to perform model averaging
wherein the prediction is obtained from a weighted average of the
predictions of a set of models. The patient-specific algorithm per-
forms Bayesian model averaging over a selected set of Bayesian net-
work models to predict the variable of interest (target variable). In
addition, the algorithm selects a set of suitable models to average
over that are individualized to the patient case at hand by employing
a patient-specific heuristic to direct the search. Specifically, the algo-
rithm uses the features of the patient case at hand to inform the
Bayesian network learning algorithm to selectively average over
models that differ considerably in their predictions for the target
variable of the case at hand. The differing predictions of the selected
models are then combined to predict the target variable.

Our hypothesis is that the patient-specific algorithm benefits
from learning Bayesian networks with local structure in addition
to performing Bayesian model averaging over such structures
when compared to learning only the global structure or performing
only model selection. We have extensively studied and shown that
Bayesian model averaging over standard Bayesian network models
with global structure that are chosen using the patient-specific
heuristic improves predictive performance [5]. Here, we show that
using Bayesian network models with local structure has the ability
to improve performance over using models with global structure
when the number of available cases for learning is small. We eval-
uated the performance of the patient-specific algorithm on two
clinical datasets to predict two outcomes of interest. In the next
section, we describe these concepts in greater detail, and provide
additional background for understanding the methods and evalua-
tion sections that follow.
2. Background

In this section, we introduce Bayesian networks and Markov
blankets and describe a global structure representation and a local
structure representation for them.
2.1. Bayesian networks

A Bayesian network (BN) model is a probabilistic model that
combines a graphical representation (the BN structure) with quan-
titative information (the probability parameters of the BN) to rep-
resent the joint probability distribution over a set of random
variables [6]. Specifically, a BN M representing the set of variables
X consists of a pair (G, hG). G is a directed acyclic graph (DAG) that
contains a node for every variable1 in X and an arc between every
pair of nodes if the corresponding variables are directly probabilisti-
1 Nodes in the BN graph represent variables. Because of their direct correspon-
dence, we use the terms node and variable interchangeably in this paper.
cally dependent. Conversely, the absence of an arc between a pair of
nodes denotes probabilistic independence (often conditional) be-
tween the corresponding variables. hG represents the parameters of
the model, which are probability distributions. A BN structure refers
only to the graphical structure G, while a BN model refers to both the
structure G and a corresponding set of parameters hG.

In a BN M, the immediate predecessors of a node Xi in X are
called the parents of Xi, and the successors, both immediate and re-
mote, of Xi in X are called its descendants. The immediate succes-
sors of Xi are called the children of Xi. For each node Xi, there is a
probability distribution (that may be discrete or continuous) on
that node given the state of its parents. The complete joint proba-
bility distribution over X, represented by the parameterization hG,
can be factored into a product of probability distributions defined
on each node in the network. This factorization is determined by
the independences captured by the structure of the BN and is for-
malized by the BN Markov condition: A node (representing a var-
iable) is independent of its non-descendants given just its
parents. According to the Markov condition, the joint probability
distribution on model variables X = (X1, X2, . . ., Xn) can be factored
as follows:

PðX1;X2; :::;XnÞ ¼
Yn

i¼1

PðXijPaiÞ; ð1Þ

where Pai denotes the set of nodes that are the parents of Xi. If Xi has
no parents, then the set Pai is empty and P(Xi|Pai) is just P(Xi). An
illustrative example of a BN is shown in Fig. 1, where the top panel
shows the graphical structure G and the bottom panel gives an
example set of parameters hG for G.

2.2. Markov blanket

The Markov blanket (MB) of a variable Xi, denoted by MB(Xi), de-
fines a set of variables such that conditioned on MB(Xi), Xi is condi-
tionally independent of all variables outside of MB(Xi) [6]. The
minimal Markov blanket of a node Xi, which is sometimes called
its Markov boundary, consists of the parents, the children, and the
parents of the children (spouses) of Xi, as illustrated in Fig. 2. As
can be seen from the figure, the parents and children of Xi are di-
rectly connected to it and are hence in its MB. In addition, the
spouses are included in the MB, because of the phenomenon of
explaining away which refers to the observation that when a child
node is instantiated its parents in general are statistically depen-
dent. The MB of a node Xi is noteworthy because it identifies nodes
that make Xi independent of all other nodes in the network. In par-
ticular, when interest centers on the distribution of a specific target
node, as is the case in classification, the structure and parameters
of only the MB of the target node need be learned. For this reason,
the patient-specific methods, which are described below, search in
the space of MBs of the target variable rather than in the space of
BNs. An excellent overview of MB methods of classification and the
discovery of MBs from data is provided in [7,8].

2.3. Global and local structures

The DAG of a BN encodes statements of variable independence.
Consider the following example. According to standard usage, a
variable X is independent of Y given variable Z if P(x|y, z) = P(x|z)
for all values x, y and z that the variables X, Y, Z can assume. In
the standard BN, the graphical structure makes explicit indepen-
dence relations of the form X ? Y jZ, which implies that
PðXjY ; ZÞ ¼ PðXjZÞ for all values of the variables X, Y and Z. How-
ever, these are not the only independencies that may be present
in a domain. For instance, consider value-specific independence
relationships that hold for only particular assignments of values
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Fig. 1. A simple hypothetical BN for a medical domain. All the nodes represent binary variables, taking values in the domain {T, F} where T stands for True and F for False. The
graph at the top represents the BN structure. Associated with each variable (node) is a conditional probability table representing the probability of each variable’s value
conditioned on its parent set. (Note that these probabilities are for illustration only; they are not intended to reflect the frequency of events in any actual patient population.)
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Fig. 2. Example of a Markov blanket within a BN. The minimal Markov blanket of
the node X6 (shown stippled) consists of the set of parents (X2 and X3), children (X8

and X9), and parents of the children (X5 and X7) of that node, as indicated by the
shaded nodes. Nodes X1, X4, X10 and X11 are not in the minimal Markov blanket of X6.
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to certain nodes; these relationships cannot be entirely repre-
sented by a BN graphical structure. Value-specific independence
relationships are of the form X ? YjZ ¼ z1, which implies that
PðXjY; Z ¼ z1Þ ¼ PðXjZ ¼ z1Þ for all values of the variables X and Y
when Z takes the particular value z1. For other values of Z, such
as z2, it may be that X and Y are not conditionally independent, that
is, P(X|Y, Z = z2) – P(X|Z = z2). This type of independence relation is
also known as context-specific independence [9]. The preceding
example can be interpreted as X is independent of Y in the context
of Z taking the value z1, but not the value z2. In general, these inde-
pendent statements imply that in some contexts, defined by an
assignment of specific values to the variables in the BN, specific
independences hold [10].
We refer to BNs that do not explicitly represent context-specific
structure as BNs with global structure, in contrast to BNs that explic-
itly capture context-specific structure, which we refer to as BNs
with local structure. We first describe conditional probability tables,
a typical representation used in BNs with global structure. We then
describe one representation used for BNs with local structure,
namely, decision graphs.

Associated with a node in a BN is a set of conditional probability
distributions (CPDs) that in domains with discrete random variables
are typically represented by a table. In this representation, P(Xi|Pai)
is a table that contains an entry for each joint instantiation of Xi

and Pai. Each column (or row) in the table represents a single con-
ditional probability distribution, P(Xi|Pai = pai), corresponding to a
particular instantiation of the variables in Pai to a set of values gi-
ven by pai. Tabular CPDs are aptly called conditional probability ta-
bles (CPTs) and are commonly the representation used in discrete
BNs. For example, the CPD for node X4 in the top panel in Fig. 1 is
represented by the CPT shown in the bottom panel in Fig. 1 that
contains eight parameters. CPTs provide a general representation
for discrete nodes in that every possible discrete conditional prob-
ability distribution can be represented by a conditional probability
table. The CPT representation has the disadvantage that in general
the number of parameters of a node grows exponentially in the
number of parents of the node. When parameters are estimated
from data, this expansion of the CPT leads to poor estimates of
the parameters since fewer data points contribute to the estimate
of each parameter. Representations that capture structure and reg-
ularities within the CPDs provide additional domain knowledge
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about the interactions among the parents of a node and reduce the
number of parameters needed to specify the CPDs. We now briefly
describe representations used in BNs with local structure.

Several representations for local structure have been described
for capturing context-specific independencies. Friedman and
Goldszmidt describe a default table representation which is similar
to a CPT except that it provides a default CPD for a subset of the
parent states, and a decision tree representation, where a decision
tree is used to represent the local structure for a BN node Xi [11].
A decision tree is a graph (not a BN graph) where the root node
has no parents, and all other nodes have one parent. Nodes that
have children and appear in the interior of the tree are called inte-
rior nodes, and terminal nodes are called leaf nodes. Fig. 3 gives sev-
eral examples of local structures represented by decision trees. A
small BN with three nodes is shown in Fig. 3a and an example
CPT for node X3 is given in Fig. 3b. The CPT can be equivalently rep-
resented by a complete decision tree as shown in Fig. 3c. Fig. 3d
and e show alternate decision trees where each one captures one
of the two context-specific independence relations that is present
but not both.

Chickering and colleagues generalized the decision tree repre-
sentation to decision graphs, which can capture a richer set of con-
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Fig. 3. Examples of CPD representations for a small hypothetical BN where all nodes repr
F for False. Several CPD representations for the BN node X3 (cough) in panel (a) are shown
four parameters (only the values for P(X3 = T|X1, X2) are shown). The CPT can be equivalen
show alternate decision trees where each one captures one of the two context-specific
shows a decision graph that captures both the context-specific independence relations (s
of decision trees and decision graphs are shown as either circles with double lines
P(X3 = T|X1, X2) are shown under each leaf node.
text-specific independence relations [12]. A decision graph differs
from a decision tree in that a node may have multiple parents,
rather than just one parent. A decision graph, thus, allows two or
more distinct paths from the root node to terminate in the same
leaf node. As an example, Fig. 3f shows a decision graph CPD rep-
resenting the local structure of the node X3 in Fig. 3a. In this exam-
ple, the decision graph CPD is more compact than either the CPT or
the several decision tree representations; it requires one fewer set
of parameters than the decision tree CPDs (Fig. 3d and e) and two
fewer sets of parameters than the CPT or the complete decision
tree CPD (Fig. 3c). The decision graph is able to capture both con-
text-specific independence relations given in the example, demon-
strating that it is a more general representation than the decision
tree.

For a BN node Xi that is represented by a decision graph, all
paths that lead to the same leaf node represent distinct parent
states for which Xi has the same conditional distribution. The deci-
sion graph representation is more general than the decision tree
representation, in that, any local structure that can be represented
compactly as a tree can be represented as a graph, but the converse
is not true. The patient-specific methods described later use the
CPT representation for learning MBs with global structure and
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the decision graph representation for learning MBs with local
structure.
3. Patient-specific prediction algorithms

We now describe the patient-specific Markov blanket algorithm
that is intended to predict well a discrete target variable of interest,
such as a patient outcome. The algorithm (1) uses Markov blanket
models, (2) carries out Bayesian model averaging over a selected
set of models to predict the outcome of interest for the patient case
at hand, and (3) employs a patient-specific heuristic to locate a set
of suitable models to average over.

Bayesian model averaging over all models has been shown to
provide better predictive performance compared to that of any sin-
gle model over a range of applications involving different model
classes and types of data [4]. However, in almost all practical situ-
ations, averaging over all models to obtain the Bayes optimal esti-
mate is computationally intractable. One approach, termed
selective model averaging, approximates the Bayes optimal predic-
tion by averaging over a subset of the possible models, and has
been shown to improve predictive performance [4,13,14]. The pa-
tient-specific algorithm performs selective model averaging and
uses a novel heuristic search to select the models over which aver-
aging is done. The patient-specific characteristic of the algorithm
arises from the observation that the search heuristic is sensitive
to the features of the particular case at hand.

The model space employed by the algorithm is the space of
Markov blankets of the target node, since this is sufficient for pre-
dicting the target variable. Two versions of the patient-specific
algorithm are considered that differ in the representation em-
ployed for the conditional probability distributions. Both use mod-
el averaging (MA). The patient-specific Markov blanket global
structure (PSMBg-MA) algorithm learns MBs with CPTs, while the
patient-specific Markov blanket local structure (PSMBl-MA) algo-
rithm learns MBs with decision graph CPDs. This implies that the
PSMBl-MA algorithm employs a richer space of models than the
PSMBg-MA algorithm.

3.1. Bayesian model averaging and selection

We first give a detailed description of PSMBg-MA and PSMBl-
MA that are two versions of the patient-specific algorithms that
use Bayesian model averaging. Later, we briefly describe two addi-
tional versions of the patient-specific algorithms that use Bayesian
model selection.

The objective of the patient-specific algorithms is to derive the
posterior distribution P(Zt|xt, D) for the target variable Zt given the
values of the other variables Xt = xt for the case at hand and the
training data D. For example, the patient-specific algorithms might
derive for a patient t who is admitted to a hospital with potential
sepsis, the posterior distribution of the target variable Zt of mortal-
ity within 90 days, from information xt known about the patient at
the time of admission and from a database D of previous patients
who were admitted for sepsis. The ideal computation of the poster-
ior distribution P(Zt|xt, D) by Bayesian model averaging is as
follows:

PðZt jxt ;DÞ ¼
X
G2M

PðZt jxt ;G;DÞPðGjDÞ; ð2Þ

where the sum is taken over all MB structures G in the model space
M. The first term on the right hand side, P(Zt|xt, G, D), is the proba-
bility P(Zt|xt) computed with a MB that has structure G with param-
eters that are estimated from training data D using Eq. (3) below.
The second term, P(G|D), is the posterior probability of the MB
structure G given D, which is also known as the Bayesian score for
structure G. In essence, Eq. (2) states that a conditional probability
of interest P(Zt|xt) is derived by taking a weighted average of that
probability over all MB structures, where the weight associated
with a MB structure is the probability of that MB structure given
the data. In general, P(Zt|xt) will have different values for the differ-
ent sets of MB structures over which the averaging is carried out.

Inference in MB structure. Computing P(Zt|xt, G, D) in Eq. (2) in-
volves performing inference in the MB with a specified structure
G. First, the parameters associated with MB structure G are esti-
mated using Bayesian parameters as given by the following expres-
sion [15,16]:

PðXi ¼ kjPai ¼ jÞ � hijk ¼
aijk þ Nijk

aij þ Nij
; ð3Þ

where (1) Nijk is the number of cases in dataset D in which Xi = k and
the parents of Xi have the state denoted by j, (2) Nij ¼

P
kNijk, (3) aijk

is a parameter prior that can be interpreted as belief equivalent to
having previously (prior to obtaining D) seen aijk cases in which
Xi = k and the parents of Xi have the state denoted by j, and (4)
aij ¼

P
kaijk. For the patient-specific algorithms in this paper, we as-

sume that aijk is set to 1 for all i, j, and k, which represents a simple
non-informative parameter prior [15]. Next, the parameterized MB
model is used to compute the distribution over the target variable Zt

of the case at hand given the values xt of the remaining variables in
the MB by applying standard BN inference [17].

Posterior of MB structure. The second term P(G|D) in Eq. (2) is de-
rived by the application of Bayes rule:

PðGjDÞ ¼ PðDjGÞPðGÞ
PðDÞ : ð4Þ

Since the denominator P(D) does not vary with the structure G,
it simply acts as a normalizing factor that does not distinguish be-
tween different structures. Dropping the denominator gives the
following Bayesian score:

scoreðG;DÞ ¼ PðDjGÞPðGÞ: ð5Þ

The second term on the right in Eq. (5) is the prior over struc-
tures, while the first term is the marginal likelihood which mea-
sures the goodness of fit of the given structure to the data. The
marginal likelihood is computed as follows:

PðDjGÞ ¼
Z

hG

PðDjhG;GÞPðhGjGÞdhG; ð6Þ

where PðDjhG;GÞ is the likelihood of the data given the MB (G, hG)
and PðhGjGÞ is the specified prior distribution over the possible
parameter values for the network structure G. Intuitively, the mar-
ginal likelihood measures the goodness of fit of the structure, as
averaged over all possible values of its parameters. We note that
the marginal likelihood is distinct from the maximum likelihood,
although both represent a likelihood function of the data given a
model structure. The maximum likelihood is the maximum value
of this function over all parameters while the marginal likelihood
is the integrated (or the average) value of this function, with the
integration being carried out with respect to the prior PðhGjGÞ.

Marginal likelihood of MB structure. We now provide closed-form
solutions for computing the marginal likelihood as given by Eq. (6)
for MBs with global structure represented by CPTs and for MBs
with local structure represented by decision graphs. For a MB with
CPTs, the marginal likelihood P(D|G), can be evaluated analytically
given the following assumptions: (1) the variables are discrete and
the data D are a multinomial random sample with no missing val-
ues; (2) global parameter independence holds, that is, the param-
eters associated with each variable given its parents are
independent of the parameters of each other variable given its
parents; (3) local parameter independence holds, that is, the
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parameters representing the distribution of variable Xi given a
state of its parents (e.g., all such parents having the state ‘‘True”)
are independent of the parameters of Xi for each other state of its
parents (e.g., all parents having the state ‘‘False”); and (4) the
parameters’ prior distributions are represented using a Dirichlet
distribution [18]. Given these assumptions, the closed-form solu-
tion for P(D|G) is given as follows [15,16]:

PðDjGÞ ¼
Yn

i¼1

Yqi

j¼1

CðaijÞ
Cðaij þ NijÞ

Yri

k¼1

Cðaijk þ NijkÞ
CðaijkÞ

; ð7Þ

where C denotes the Gamma function,2 n is the number of variables
in G, qi is the number of joint states of the parents of variable Xi that
occur in D, and ri is the number of states of Xi that occur in D. Also, as
described above, Nijk is the number of instances in the data where
node i has value k and the parents of i have the state denoted by j,
and Nij ¼

P
kNijk. In addition, as previously mentioned, aij ¼

P
kaijk.

For a MB with local structure represented by decision graphs,
the graphical structure consists of the global structure G and a set
of local structures {DG1, . . ., DGi, . . ., DGn}, where DGi is the local
decision graph structure for node Xi in G, and the complete struc-
ture specification is given by {G, DG1, . . ., DGi, . . ., DGn}. The mar-
ginal likelihood for a MB with local structure is derived in an
analogous fashion to Eq. (7) for the MB with global structure:

PðDjG;DG1;DGi; :::;DGnÞ ¼
Yn

i¼1

YjLi j

l¼1

CðailÞ
Cðail þ NilÞ

Yri

k¼1

Cðailk þ NilkÞ
CðailkÞ

;

ð8Þ

where jLij is the cardinality of the set of leaves in the decision graph
DGi of Xi in dataset D, Nilk is the number of cases in D that have Xi = k
and have parent states of Xi that correspond to one of the paths in
the decision graph leading to the leaf node l, and Nil ¼

P
kNilk. The

key difference between Eqs. (7) and (8) is in the middle product,
which in Eq. (7) runs over all the columns in the CPT, while in Eq.
(8) it runs over all the leaf nodes of the decision graph of Xi.

Prior of MB structure. The term P(G) in Eq. (5) is the structure
prior, which represents a prior belief that the data was generated
by a distribution that is consistent with MB structure G in predict-
ing node Z. For the PSMBg-MA algorithm, we assume a uniform
prior belief over all G. Let KG denote the number of possible MBs
of Z. Thus, for any given MB, P(G) = 1/KG. Therefore, for the
PSMBg-MA algorithm, Eq. (5) becomes:

scorePSMBg-MAðG;DÞ ¼ PðDjGÞ � 1=KG: ð9Þ

For the PSMBl-MA algorithm, a two-level hierarchical structure
prior is used, corresponding to the global and the local structure
being considered. As mentioned previously, the complete structure
specification of a MB with local structure is given by
{G, DG1, . . ., DGi, . . ., DGn}, where G is the global MB structure and
DGi is the local decision graph structure for node Xi in G. As with
PSMBg-MA, in PSMBl-MA we assume a uniform prior belief over
all MBs of Z. For each such MB G, we consider all possible decision
graph structures consistent with G. Thus, the global component of
the PSMBl-MA structure prior is 1/KG. The local component is de-
rived as follows. The number of possible decision graph structures
is the same as the number of ways in which the values of the nodes
in G can be partitioned into nonempty sets. The number of ways in
which k elements can be partitioned into nonempty subsets is
called a Bell number and is denoted by B(k) [19]; B(k) is efficiently
computable. The prior for a local structure for node Xi in G is there-
fore given as 1/B(|Pai|), where |Pai| is the number of joint parent
states of Xi regardless of whether these joint parent states are real-
2 When n is a positive integer, U(n) = (n � 1)!, and thus, the gamma function is a
generalization of the factorial function.
ized in D. For example, if Xi has three binary variables, then
|Pai| = 8. Overall, the prior for structure {G, DG1, . . ., DGi, . . ., DGn}
is then taken to be the following:

PðG;DG1;DGi; :::;DGnÞ ¼ 1 KG

Yn

i¼1

BðjPaijÞ
,

: ð10Þ

This structure prior strongly biases the PSMBl-MA algorithm to
prefer simpler local structures over more complex ones; such a
prior tends to prevent local structures from overfitting the data.
Combining the above results, the Bayesian score for the PSMBl-
MA algorithm is as follows:

scorePSMBl-MAðG;DÞ ¼ PðDjG;DG1; :::;DGnÞ � 1 KG

Yn

i¼1

BðjPaijÞ
,

: ð11Þ

In summary, given a MB structure, the two terms on the right
hand side in Eq. (2) can now be computed.3 If it is tractable to enu-
merate all structures in the model space, then the target distribution
P(Zt|xt, D) can be computed exactly using Eq. (2). However, this is
usually not possible; an alternative is to perform selective model
averaging, which we describe next.

3.2. Selective Bayesian model averaging

Summing over the very large number of MBs in Eq. (2) is usually
intractable; hence Eq. (2) is approximated with selective model
averaging, and heuristic search (described in the next section) is
used to sample the model space. For a set R of MB structures (that
are global MB structures for the PSMBg-MA algorithm and local MB
structures for the PSMBl-MA algorithm) that have been chosen
from the model space by heuristic search, selective model averag-
ing estimates P(Zt|xt, D) as:

PðZtjxt ;DÞ ffi
X
G2R

PðZtjxt ;G;DÞ PðGjDÞP
G02R

PðG0jDÞ
: ð12Þ

From Eqs. (4) and (5), it can be seen that:

PðGjDÞ / PðDjGÞPðDÞ ¼ scoreðG;DÞ: ð13Þ

Substituting Eq. (13) into Eq. (12), we obtain:

PðZtjxt ;DÞ ffi
X
G2R

PðZtjxt ;G;DÞ scoreðG;DÞP
G02R

scoreðG0;DÞ
; ð14Þ

where, score(G, D) is given by Eqs. (9) and (10) for PSMBg-MA and
PSMBl-MA, respectively. The patient-specific algorithms perform
selective model averaging and seek to locate a good set of models
R over which the averaging is carried out by performing patient-
specific search, as described next.

3.3. Patient-specific search

Both the PSMBg-MA and the PSMBl-MA employ a two-phase
search. We first describe the two-phase search performed by the
PSMBg-MA algorithm to sample the space of MB structures, and
then indicate how the PSMBl-MA differs from it. The first phase
ignores the evidence xt from the case at hand, while searching
for MB structures that best fit the training data. The second phase
continues to add to the set of MB structures obtained from the first
phase, but now searches for MB structures that have the greatest
impact on the prediction of Zt for the case at hand. We now de-
scribe in greater detail the two phases of the search.
3 In the case of scoring a local structure, the term G in Eq. (2) is replaced by the
term {G, DG1, . . ., DGi, . . ., DGn}, and elsewhere in this paper. We only show G to keep
the notation simple.
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The first phase uses greedy hill-climbing search and adds to a set R
the best model discovered at each iteration of the search. At each
iteration of the search, successor models are generated from the cur-
rent best model in R; the best of those successor models is added to R
only if this model is better than current best model in R; the remain-
ing successor models are discarded. Successor models are generated
from a given MB model by the application of the following operators:
(1) add an arc between two nodes if one does not exist, (2) delete an
existing arc, and (3) reverse an existing arc, with the constraint that
an operation is allowed only if it generates a legal MB structure. No
backtracking is performed and the first phase search terminates in
a local maximum. Since the MB structures identified during the first
phase are determined only by the training data and not by the pa-
tient case at hand, this phase is not patient-specific.

The second phase uses best-first search and adds the best model
discovered at each iteration of the search to the set R. Unlike gree-
dy hill-climbing search, best-first search contains models that have
not been expanded (i.e., whose successors have not be generated)
in a priority queue. Since, the number of successor models that are
generated can be quite large, the priority queue Q is limited to a
capacity of at most w models. The queue allows the algorithm to
keep in memory a limited number of best scoring models found
so far, and facilitates limited backtracking to escape local maxima.

The second phase searches for MB models that change the cur-
rent model-averaged estimate of P(Zt|xt, D) the most. The goal is to
find viable competing MB models for making this posterior proba-
bility prediction. When no competitive MB models can be found,
the prediction is assumed to be stable. Each candidate MB model
G* in Q is evaluated based on how much it changes the current esti-
mate of P(Zt|xt, D) that is obtained by model averaging over the MB
models in R. More change is better. Specifically, we use the Kull-
back–Leibler (KL) divergence between the two estimates of
P(Zt|xt, D), one estimate computed with G* and the other computed
without G*, in the set of models over which the model averaging is
carried out. The KL divergence, or relative entropy, is a quantity
that measures the distance between two probability distributions
[20]. Thus, the score for a candidate model G* is given by:

f ðR;G�Þ ¼ KLðpkqÞ �
X

x

pðxÞ log
pðxÞ
qðxÞ ; ð15Þ

where

pðxÞ ¼
X
G2R

PðZtjxt ;G;DÞ PðGjDÞP
G02R

PðG0jDÞ
; and

qðxÞ ¼
X

G2R[fG�g
PðZt jxt;G;DÞ PðGjDÞP

G02R[fG�g
PðG0jDÞ

:

By Eq. (13) the term P(G|D) that appears in p(x) and q(x) can be
substituted with the term score(G, D). Using this substitution, the
score for a candidate model G* for PSMBg-MA is:

f ðR;G�Þ ¼ KLðpkqÞ �
X

x

pðxÞ log
pðxÞ
qðxÞ ; ð16Þ

where

pðxÞ ¼
X
G2R

PðZtjxt ;G;DÞ scorePSMBg-MAðG;DÞP
G02R

scorePSMBg-MAðG0;DÞ
; and

qðxÞ ¼
X

G2R[fG�g
PðZt jxt;G;DÞ scorePSMBg-MAðG;DÞP

G02R[fG�g
scorePSMBg-MAðG0;DÞ

;

where scorePSMBg-MA is given by Eq. (9). In an analogous fashion, the
score for a candidate model G* for PSMBl-MA is:
f ðR;G�Þ ¼ KLðpkqÞ �
X

x

pðxÞ log
pðxÞ
qðxÞ ; ð17Þ
where
pðxÞ ¼
X
G2R

PðZt jxt;G;DÞ scorePSMBl-MAðG;DÞP
G02R

scorePSMBl-MAðG0;DÞ
; and

qðxÞ ¼
X

G2R[fG�g
PðZt jxt;G;DÞ scorePSMBl-MAðG;DÞP

G02R[fG�g
scorePSMBl-MAðG0;DÞ

;

where scorePSMBl-MA is given by Eq. (11).
At the beginning of the second phase, R contains MB structures

that were selected in the first phase. Successors to these models
are generated, scored using Eq. (15) and added to the priority
queue Q. In each iteration, the MB structure in Q with the highest
score is removed and added to R and, in addition, its successors are
scored and added to Q. The second phase terminates when no MB
structure in Q has a score higher than some small value e or when a
period of time t has elapsed, where e and t are specified by the user.
In the second phase the patient case at hand determines the selec-
tion of MB structures in conjunction with the training data, and
thus this phase is patient-specific. The pseudocode for the
PSMBg-MA algorithm is given in Fig. 4a.

The PSMBl-MA algorithm differs from the PSMBg-MA algorithm
in that it supplements each phase in the two-phase search proce-
dure used by the former with an outer search procedure and an in-
ner search procedure. The outer search procedure generates MB
structures as in the PSMBg-MA algorithm, and for each such MB
structure, the inner search procedure identifies a local decision
graph for each node in the MB structure. For a given node, the se-
lected local decision graph is the one with the best PSMBl-MA
score (computed using Eq. (11)) as found by greedy hill-climbing
search. Given a decision graph, the operators used for generating
successor decision graphs are: (1) the complete split operator that
replaces a leaf node with an internal node and a set of leaf nodes
corresponding to the states of the parent variable which is used
for the split, (2) the binary split operator that is similar to the com-
plete split operator, except that only two leaf nodes are introduced,
and (3) the merge operator that merges two leaf nodes into a single
leaf node. Further details of the operators are given in [12] which
first described the use of decision graphs for representing local
structure. The pseudocode for the PSMBl-MA algorithm is given
in Fig. 4b.

We now briefly describe two additional versions of the patient-
specific algorithms that use Bayesian model selection. Model selec-
tion is the process of using data to select one model from a set of
models under consideration and can be done using either non-
Bayesian or Bayesian approaches. Non-Bayesian methods of model
selection include choosing among competing models by maximiz-
ing the likelihood, by maximizing a penalized version of the likeli-
hood or by maximizing some measure of interest (e.g., accuracy)
using cross-validation. In Bayesian model selection, the posterior
probability of each model under consideration is computed and
the model with the highest posterior probability is chosen. The pa-
tient-specific Markov blanket global structure algorithm that per-
forms model selection (PSMBg-MS) conducts the same search as
PSMBg-MA but predicts the outcome of the patient case at hand
using the model with the highest score (where the score is given
by Eq. (9)). In an analogous fashion, the patient-specific Markov
blanket local structure algorithm that performs model selection
(PSMBl-MS) conducts the same search as PSMBl-MA but predicts
the outcome of the patient case at hand using the model with
the highest score (where the score is given by Eq. (11)).



a

b

Fig. 4. (a) High level pseudocode for the two-phase search procedure used by the PSMBg-MA algorithm. (b) High level pseudocode for the two-phase outer search procedure
and the inner search procedure used by the PSMBl-MA algorithm. The PSMBl-MA algorithm differs from the PSMBg-MA algorithm in that it invokes ProcedureDGSearch for the
inner search to identify a local decision graph for each node that was modified in the MB structure by the outer search procedure. Note that MBNode is a node in the MB
structure while DGNode is a node in a decision graph.

676 S. Visweswaran et al. / Journal of Biomedical Informatics 43 (2010) 669–685
4. Experimental methodology

In this section we describe the two clinical datasets on which
the patient-specific algorithms were evaluated, the preprocessing
of the datasets, the performance measures used in the evaluation,
and the experimental settings used for the algorithms. The two
clinical datasets included one on sepsis and another on heart
failure.

4.1. Sepsis dataset

Sepsis is a syndrome of systemic inflammation in response to
infection that leads to complex physiologic and metabolic changes
and can result in multi-system organ dysfunction and failure [21].
Sepsis is a major cause of death with a mortality rate of 30 percent
in the United States [22]. However, the risk factors, causes and
prognosis of sepsis are not fully understood.

The data in the sepsis dataset were collected in the GenIMS (Ge-
netic and Inflammatory Markers of Sepsis) project coordinated by
the Department of Critical Care Medicine in the University of Pitts-
burgh School of Medicine. GenIMS was a large, multicenter, obser-
vational cohort study of subjects with community acquired
pneumonia (but not necessarily with sepsis) presenting to the
emergency departments of 28 hospitals in western Pennsylvania,
Connecticut, Michigan, and Tennessee in the United States. The
data used in our experiments consisted of 1673 patients who were
eventually admitted to a hospital and 21 variables as predictors
that included three demographic variables, six clinical variables,



Table 1
List of the 21 predictor variables in the sepsis dataset. PSI is the Pneumonia Severity Index which is a prediction rule that classifies patients who have pneumonia into five strata of
increased risk for short-term mortality on the basis of 20 clinical variables that are routinely available at the time of admission. The Charlson score assesses comorbidity by
accounting for the presence or absence of nineteen different medical conditions at the time of admission. APACHE III is the Acute Physiologic and Chronic Health Evaluation score
(introduced in 1991) that assesses disease severity from 27 physiological and clinical parameters.

Category Predictors

Demographic Age, gender, and race

Clinical PSI at the time of admission, PSI at the end of first day of stay, Charlson score, APACHE III score on first day of stay, APACHE III score on second day
of stay, and APACHE III score on third day of stay

Inflammatory
markers

Interleukin-6 and interleukin-10

Genetic markers Ten genetic polymorphisms for the macrophage migration inhibitory factor, the tumor necrosis factor A, the interleukin-6, the interleukin-10, and
the heme oxygenase genes

Table 2
Brief descriptions of the clinical datasets. The # predictors column states the number of continuous (cnt) and discrete (dsc) predictors, as well as the total number of predictor
variables (excluding the outcome variable). The outcome variables are all binary. The training set and the test set give the number of cases in each set, respectively, and the
percentage of the cases with the positive outcome variable are given in parentheses. The total set gives the sum of the cases in the training and the test sets.

Dataset # Predictors (cnt + dsc = total) Outcome variable Training set Test set Total set

Sepsis-d 7 + 14 = 21 Death 1115 (11.1%) 558 (11.4%) 1673
Sepsis-s 7 + 14 = 21 Severe sepsis 1115 (27.4%) 558 (28.8%) 1673
Heart failure-d 11 + 10 = 21 Death 7453 (4.3%) 3725 (4.4%) 11,178
Heart failure-c 11 + 10 = 21 Complications including death 7453 (7.1%) 3725 (7.2%) 11,178

Table 3
List of the 21 predictor variables in the heart failure dataset.

Category Predictors

Demographic Gender
Historical Coronary artery disease, angina, percutaneous

transluminal coronary angiography, diabetes, and
lung disease

Vital signs Systolic blood pressure, pulse, respiratory rate, and
temperature

Laboratory Blood urea nitrogen, sodium, potassium, creatinine,
glucose, white blood cell count, and arterial pH

Electrocardiographic Acute myocardial infarction and acute myocardial
ischemia

Radiographic Pulmonary congestion and pleural effusion
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two inflammatory markers and 10 genetic variables (see Table 1).
These variables were selected by the GenIMS project investigators
to investigate the role of the macrophage migration inhibitory fac-
tor gene in the susceptibility, severity, and outcome of community
acquired pneumonia. The clinical variables are summary variables
obtained from data collected at the time of admission and during
the first three days of hospital stay. Two binary outcome variables,
which were the focus of investigation in the original study, were
selected for prediction: (1) death within 90 days of inclusion in
the study (sepsis-d in Table 2), and (2) the development of severe
sepsis during the hospitalization (sepsis-s in Table 2). Of the 1673
patients 187 (11.2%) patients died within 90 days and 466 (27.8%)
patients developed severe sepsis during the hospitalization.
4.2. Heart failure dataset

Heart failure is an acute and chronic condition that affects 5
million people in the U.S. leading to about one million hospital
admissions each year with a primary discharge diagnosis of heart
failure and another approximately two million with a secondary
discharge diagnosis of this condition [23,24]. Accurate evaluation
of heart failure patients in the Emergency Department followed
by appropriate treatment (including the decision whether to admit
a patient to the hospital or not) is an important clinical problem.

All hospitals in Pennsylvania are required by law to record more
than 300 key clinical findings for each hospitalized patient, includ-
ing demographic, historical, physical examination, laboratory, elec-
trocardiographic, and imaging data that are collected during the
course of care. These data are recorded using standardized data
collection instruments and documentation. The heart failure data
was obtained from the data collected by 192 general acute care
hospitals in Pennsylvania for the year 1999 and consist of heart
failure patients who were hospitalized from the Emergency
Departments. The data used in our experiments consisted of
11,178 cases and 21 variables as predictors that included demo-
graphic, clinical, laboratory, electrocardiographic and radiographic
findings (see Table 3). These variables were identified as prognostic
factors in a study that developed a prediction rule to detect low-
risk patients with heart failure [25]. Two binary outcome variables
were selected for prediction: (1) the occurrence of death from any
cause during the hospitalization (heart failure-d in Table 2), and (2)
the development of one or more serious medical complications
(including death) during the hospitalization (heart failure-c in Ta-
ble 2). Of the 11,178 patients 484 (6.5%) patients died during the
hospitalization and 797 (10.7%) patients developed one or more
serious medical complications during the hospitalization.
4.3. Preprocessing

All continuous variables were discretized using the method de-
scribed by Fayyad and Irani [26]. This is an entropy-based method
that analyzes the values of a continuous variable and creates
thresholds such that the resulting intervals have high information
gain in predicting the outcome variable. The discretization thresh-
olds were determined only from the training sets and then applied
to both the training and test sets. Missing values were imputed
using an iterative non-parametric imputation algorithm described
by Caruana [27]. This method has previously been applied to fill in
missing predictor values for a clinical dataset with good results
[28].
4.4. Algorithms

For both the PSMBg-MA and PSMBl-MA algorithms, the MB
structures were selected through a two-phase search. The first



Table 4
Four versions of the patient-specific algorithm with a synopsis of each. All four use a first phase of search that is non-patient-specific and a second phase that is patient-specific.

Acronym Algorithm Global versus
local model

Model
averaging

Prediction

PSMBg-MA Patient-specific Markov blanket (global) – model
averaged

Global Yes Based on model averaging over models selected in both
phases

PSMBg-MS Patient-specific Markov blanket (global) – model
selection

Global No Based on the highest scoring model from models
selected by PSMBg-MA

PSMBl-MA Patient-specific Markov blanket (local) – model
averaged

Local Yes Based on model averaging over models selected in both
phases

PSMBl-MS Patient-specific Markov blanket (local) – model
selection

Local No Based on the highest scoring model from models
selected by PSMBl-MA

Table 5
Brief description of the performance measures used in evaluation of the performance
of the algorithms. For each measure a score closer to 0 indicates better performance.

Performance measure Range Best score

Misclassification error [0, 1] 0
1-Area under the ROC curve (1-AUC) [0, 1] 0
Squared error [0, 1] 0
Logarithmic loss [0,1) 0
Calibration score (CAL) [0, 1] 0
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phase terminated after 20 MB models had accumulated and the
second phase terminated after 20 more had been accumulated.
The prediction for the outcome variable of the test case was ob-
tained by averaging the predictions of the 40 models. The
PSMBg-MS and PSMBl-MS algorithms accumulated the same 40
models in the two search phases as the respective model averaged
algorithms and identified the model with the highest model score
as given by Eqs. (9) and (11), respectively. The prediction for the
outcome variable of the test case was obtained from the single
highest scoring model. Salient features of the four algorithms are
given in Table 4. All four algorithms were implemented in Java.

In addition to the patient-specific algorithms, we applied logis-
tic regression as an example of a population-wide algorithm. In the
experiments we used the implementation of logistic regression in
the WEKA software package (version 3.4.3) with its default settings
[29].
4.5. Experiments

We performed several experiments to evaluate the performance
of the patient-specific algorithms. As a measure of learning effi-
ciency, we are particularly interested in evaluating how different
amounts of training data affect the algorithms’ predictive perfor-
mance. We first describe the experiments performed with the sep-
sis dataset which has a total of 1673 cases. The original sepsis
dataset was first randomly split into a training set approximately
consisting of two-thirds of the data and a test set consisting of
the remaining one-third, such that the proportions of the states
of both outcome variables were approximately the same in the
two sets (see Table 2). Thus, the sepsis dataset was split into a
training dataset of 1115 cases (with 11.1% 90-day mortality and
27.4% rate of development of severe sepsis during hospitalization,
respectively) and a test dataset of 558 cases (with 11.4% 90-day
mortality and 28.8% rate of development of severe sepsis during
hospitalization, respectively). Then, the complete training set was
used to construct training subsets of sizes of 64, 128, 256, 512,
and 1024. Each larger training dataset contained all the cases in-
cluded in the preceding smaller training datasets. The cases in
the test dataset were used only for evaluation and were not used
for learning the models. We applied the five algorithms described
in the previous section (PSMBl-MA, PSMBl-MS, PSMBg-MA
PSMBg-MS and logistic regression) to each of the training sets to
learn models and evaluated the models on the test dataset. The five
evaluation measures that we used are described in the next
section.

We performed similar experiments on the heart failure dataset
which has a total of 11,178 cases and is about 8 times larger than
the sepsis dataset. The heart failure dataset was randomly split
into a training dataset of 7453 cases (wherein 90-day mortality
was 4.3% and the rate of serious medical complications during hos-
pitalization was 7.1%, respectively) and a test dataset of 3725 cases
(wherein 90-day mortality was 4.4% and the rate of serious medi-
cal complications during hospitalization was 7.2%, respectively).
The complete training set was used to construct training subsets
of sizes of 64, 128, 256, 512, and 1024. The five algorithms were
applied to each of the training sets to learn models that were eval-
uated on the test dataset using the five evaluation measures de-
scribed next.

4.6. Performance measures

The performance of the algorithms was evaluated on two dis-
crimination measures and three probability measures. For discrim-
ination measures we used the misclassification error and the area
under the ROC curve (AUC). These discrimination measures evalu-
ate how well an algorithm differentiates among the various classes,
by which we mean the values of the outcome variable. For proba-
bility measures we used the mean squared error, logarithmic loss,
and calibration. For calibration, we used a score called CAL that
was developed by Caraua and is based on reliability diagrams
[30]. The probability measures are uniquely minimized (in expec-
tation) when the predicted value for the target of each instance
coincides with the actual fraction of that case taking that target va-
lue in the test set. A brief summary of the performance measures is
given in Table 5.

We used the Wilcoxon paired-samples signed-rank test for
comparing the performance of the algorithms. This test is a non-
parametric procedure used to test whether there is sufficient evi-
dence that the median of two probability distributions differ in
location [31]. In evaluating algorithms, it can be used to test
whether two algorithms differ significantly in performance on a
specified measure.

5. Results

The results for the five evaluation measures on the sepsis data-
set for the two outcomes are plotted in Fig. 5 (death) and Fig. 6 (se-
vere sepsis). The corresponding results on the heart failure dataset
for the two outcomes are plotted in Fig. 7 (death) and Fig. 8 (com-
plications). Each plot contains results comparing model averaging
with global structure (global MA) obtained from PSMBg-MA, model
averaging with local structure (local MA) obtained from PSMBl-
MA, the single best MB model with global structure (global MS)
obtained from PSMBg-MS, the single best MB model with local
structure (local MS) obtained from PSMBl-MS, and logistic
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Fig. 5. Sepsis dataset results for the outcome death. Plots show the mean classification error, mean squared error, mean logarithmic loss, mean 1-AUC and mean CAL score of
the patient-specific model averaging algorithms versus model selection versions of these algorithms. For all performance measures lower is better. The sizes of the training
dataset vary from 64 to 1024 patient cases. The plots in the solid lines are for the PSMBl-MA (local MA) and the PSMBl-MS (local MS) algorithms; plots in the broken lines are
for the PSMBg-MA (global MA) and the PSMBg-MA (global MS) algorithms; and plots in the dotted lines are for logistic regression (LR). The error bars represent one standard
deviation.
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Fig. 6. Sepsis dataset results for the outcome severe sepsis. See the legend of Fig. 5 for details.
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regression (LR). Five separate plots are given for each dataset; one
plot each for the misclassification error, the 1-AUC, the squared er-
ror, the logarithmic loss, and the CAL score, respectively. In all
plots, smaller scores indicate better performance. The tables in



Misclassification error

0.00

0.10

0.20

0.30

0.40

0.50

0.60

64 128 256 512 1024

sample size

M
is

cl
as

si
fi

ca
ti

o
n

 e
rr

o
r

global MA

local MA

global MS

local MS

LR

Squared error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

sample size

S
q

u
ar

ed
 e

rr
o

r

global MA

local MA

global MS

local MS

LR

Logarithmic loss

0.00

0.10

0.20

0.30

0.40

0.50

0.60

sample size

L
o

g
ar

it
h

m
ic

 lo
ss

global MA

local MA

global MS

local MS

LR

1 - AUC

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

sample size

1 
- 

A
U

C

global MA

local MA

global MS

local MS

LR

CAL score

0.00

0.05

0.10

0.15

0.20

0.25

64 128 256 512 102

64 128 256 512 1024 64 128 256 512 1024

64 128 256 512 1024

sample size

C
A

L
 s

co
re

global MA

local MA

global MS

local MS

LR

Fig. 7. Heart failure dataset results for the outcome death. The sizes of the training dataset vary from 64 to 4096 patient cases. See the legend of Fig. 5 for details.
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the appendix (Tables A1–A4) give the mean evaluation measures of
the different algorithms for the training dataset sizes of 64, 128,
512, and 1024.
Tables 6 and 7 report results from pair-wise comparisons of the
performance of the PSMBl-MA algorithm versus the PSMBg-MA,
PSMBl-MS, and LR algorithms. We did not compare PSMBl-MA
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Fig. 8. Heart failure dataset results for the outcome complications, which includes death. The sizes of the training dataset vary from 64 to 4096 patient cases. See the legend of
Fig. 5 for details.
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Table 6
Wilcoxon paired-samples signed-rank test comparing the performance of PSMBl-MA
with other algorithms at smaller training sample sizes of 64 and 128. PSMBl-MS
denotes the single best MB model with local structure and LR is the logistic regression
model. For each performance measure the Z statistic is given with the corresponding
p-value in brackets. The Z statistic is negative when PSMBl-MA has a lower (i.e.,
better) score on a performance measure than the competing algorithm. Thus, a
negative Z statistic indicates better performance by PSMBl-MA. The two-tailed p-
values of 0.05 or smaller are in bold, indicating that PSMBl-MA performed statistically
significantly better at that level.

Performance measure PSMBl-MS PSMBg-MA LR

Misclassification error �2.521 (0.012) �1.120 (0.263) �1.680 (0.093)
1-AUC �1.120 (0.263) �1.120 (0.263) �0.420 (0.674)
Logarithmic loss �2.521 (0.012) �2.380 (0.017) �2.380 (0.017)
Squared error �2.380 (0.017) �2.380 (0.017) �2.380 (0.017)
CAL score �2.380 (0.017) �1.120 (0.263) �2.521 (0.012)

Table 7
Wilcoxon paired-samples signed-rank test comparing the performance of PSMBl-MA
with other algorithms at larger training sample sizes of 512 and 1024. See the caption
of Table 6 for details.

Performance measure PSMBl-MS PSMBg-MA LR

Misclassification error �1.400 (0.161) �1.680 (0.093) �0.140 (0.889)
1-AUC �1.540 (0.123) �1.400 (0.161) �1.260 (0.208)
Logarithmic loss �0.560 (0.575) �1.680 (0.093) �1.820 (0.069)
Squared error �0.421 (0.674) �0.840 (0.401) �1.260 (0.208)
CAL score �1.820 (0.069) �1.402 (0.161) �0.840 (0.401)
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with PSMBg-MS since in previous work we observed that PSMBg-
MA outperformed PSMBg-MS on a large number of datasets [5].
For each pair-wise comparison, the Wilcoxon paired-samples
signed-rank test was applied to results obtained from a set of 8
training datasets: the sepsis dataset with two outcomes at two
sample sizes and the heart failure dataset with two outcomes at
two sample sizes. Table 6 gives the results at the smaller sample
sizes of 64 and 128 cases, while Table 7 gives the results at larger
sample sizes of 512 and 1024. Table 6 shows that at the smaller
training datasets of 64 and 128, PSMBl-MA performs better than
all the other methods listed there on all measures, although statis-
tically significant so for only a subset of them, as described next.
PSMBl-MA when compared to PSMBl-MS performed statistically
significantly better at the 0.05 significance level on four of the five
measures, namely, misclassification error, logarithmic loss,
squared error and the CAL score. When compared to PSMBg-MA,
PSMBl-MA performed statistically significantly better on two of
the measures, namely, logarithmic loss and squared error. When
compared to LR, PSMBl-MA performed statistically significantly
better on three of the measures, namely, logarithmic loss, squared
error, and the CAL score. Table 7 shows that at larger training data-
sets of 512 and 1024 there is no statistically significant difference
in the performance of the algorithms on any of the measures.
5.1. Model averaging versus model selection

Overall, there is a general trend of better performance on all the
measures except the AUC by the PSMBl-MA algorithm that em-
ploys model averaging when compared to the PSMBl-MS algorithm
that employs model selection. This difference in performance is
statistically significant at the 0.05 level at the smaller training set
sizes on all measures except the AUC (see Table 6) and becomes
less marked and not statistically significant at the larger training
set sizes (see Table 7). The results indicate that model averaging
is particularly helpful when the number of training cases is
smaller.
5.2. Global structure versus local structure

On comparing models with global structure with those with lo-
cal structure, there is a trend of better performance on logarithmic
loss and squared error by the PSMBl-MA over the PSMBg-MA. At
the smaller training set sizes this difference in performance is sta-
tistically significant at the 0.05 level on these two measures (see
Table 6), and at larger training set sizes the difference in perfor-
mance is less marked (see Table 7) and not statistically significant.
This trend in performance indicates that searching the richer space
of local structures is able to improve on two of the measures when
the number of training cases is smaller.

5.3. Patient-specific versus population-wide

The PSMBl-MA performs significantly better at the 0.05 signifi-
cance level at the smaller sample sizes than the population-wide
LR on the three of the performance measures (see Table 6), while
on larger training set sizes the difference in performance is less
marked and is not statistically significant (see Table 7). This trend
in performance indicates that the patient-specific search for mod-
els to average over improves some measures of performance com-
pared to a population-wide model when the training set size is
smaller.

5.4. Running times

For one patient case, the PSMBg-MA algorithm runs in
O(b d m n) time, where m is the number of cases in the training
dataset, n is the number of domain variables, d is the total number
of iterations of the search in the two phases, and b (the branching
factor) is the maximum number of successors generated from a MB
structure in either phase of the search. For a patient case, the
PSMBl-MA algorithm runs in O(b d m n 2n) time; thus it has expo-
nential time complexity in the number of domain variables. The
PSMBl-MA algorithm, which uses model averaging and searches
over local structure, performs relatively well, but it has a high com-
putational time complexity. Further details of the time complexity
analysis are given in [5].

On a PC with a 3.0 GHz CPU and 2 GB of RAM running Windows
XP, the average running time of the PSMBg-MA algorithm for a sin-
gle test case was approximately 1 h and 30 min, while the corre-
sponding average running time of the PSMBl-MA algorithm was
5 h and 30 min.
6. Discussion

One way to assist healthcare providers in making decisions un-
der uncertainty is to support their clinical decision making with
predictions from mathematical models. Improving the predictive
performance of such models has the potential to improve out-
comes in patient care. We have developed novel patient-specific
algorithms that perform Bayesian model averaging over a set of
models that is located using the features of the patient case at
hand. Combining the predictions of a set of models has been shown
previously to improve predictive performance over that of a single
model [4], and our results show that selective Bayesian model
averaging over MB structures is superior to selecting a single MB
structure.

Our results indicate that the performance of the patient-specific
algorithm that learns MBs with a standard global structure can be
improved by searching in the richer model space of MBs repre-
sented using decision-graph local structures. In our experiments,
the PSMBl-MA algorithm that performs model averaging over local
structure models never did worse than any of the following
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alternative methods: the PSMBl-MS that performs model selection
over local structure models, the PSMBg-MA that performs model
averaging over global structure models, or LR that performs popu-
lation-wide model selection. At smaller training set sizes (64 and
128 samples) the PSMBl-MA performed statistically significantly
better than PSMBl-MS on four of the five performance measures
we used. At larger training set sizes (512 and 1024 samples) the
PSMBl-MA algorithm performed better than the other algorithms,
though not statistically significantly so. These results suggest that
in datasets for which the number of training cases is small relative
to the number of variables, prediction performance will be best
when (1) learning local structure models, and (2) performing mod-
el averaging.

In the PSMBg-MA and the PSMBl-MA algorithms, the computa-
tion of the score for a candidate MB structure in the second phase
uses a similarity metric, namely KL divergence, to measure the
change in the model-averaged predictive distribution of the target
variable due to the candidate MB structure. Our results indicate
that KL divergence optimizes the probability measures the most
(logarithmic loss and squared error). Alternative similarity mea-
sures may optimize other performance measures, such as the dis-
criminative measures, namely, AUC and misclassification error;
developing and investigating such measures is an open research
problem.

Several situations are possible where the patient-specific algo-
rithms may not have an advantage over population-wide algo-
rithms. As one example, in a domain where complete Bayesian
model averaging is tractable and carried out over all models in
the model space, a search heuristic that selects a subset of models,
such as the one used by the patient-specific algorithms, is superflu-
ous. Typically, in real life domains complete model averaging over
all models is not tractable due to the enormous number of models
in the model space. Thus, the patient-specific method is useful for
selective model averaging where it identifies a potentially relevant
set of models for the patient case at hand. Another situation where
patient-specific algorithms may not have better performance is
when a relatively large number of patient cases are available with
respect to the number of variables. However, increasingly, transla-
tional datasets include genomic data such as single nucleotide
polymorphisms (SNPs) that consist of many thousands of variables
and relatively limited numbers of patient cases. In such high-
dimensional datasets, the ‘‘effective” training sample is quite small,
and for such datasets, the PSMBl-MA may prove to be a competi-
tive predictive method.

The patient-specific methods that we evaluated have several
limitations. First, in our experiments the number of models chosen
to average over was constrained to 40 to limit the running times.
Averaging over more models might improve the performance of
the patient-specific algorithms further. Second, the patient-specific
algorithms are computationally expensive and learning MBs with
local structure is several times more expensive than learning
MBs with global structure. The running times of the patient-spe-
cific algorithms for a patient case increase dramatically as the
number of variables increases. However, our focus in this paper
was predictive performance and not computation time. Concen-
trating on computational issues is worthwhile only if the predic-
tive performance of the more computationally demanding
methods yield improved performance, as happened in the results
reported here. We now plan to turn our attention to pursuing a
number of approaches for optimizing the patient-specific algo-
rithms. Third, while model averaging improves predictive perfor-
mance, explaining to the user how those predictions were
derived is less straightforward than for a single model. For exam-
ple, interest may center on which variables are the most predictive
of an outcome in a given patient. In a single MB structure, the vari-
ables comprising that structure are the important predictors for
the outcome of interest. In model averaging, one way to judge
the importance of a variable is to rank a variable by the sum of
the posterior probabilities of the MB structures in which it appears.
Despite these limitations, the results reported here provide sup-
port that patient-specific models can improve predictive perfor-
mance over population-wide models.

In summary, we introduced a patient-specific model averaging
approach for learning predictive models that are influenced by
the particular history, symptoms, laboratory results, and other fea-
tures of the patient case at hand, implemented this approach for
learning patient-specific Markov blanket models, and found that
overall these models exhibited superior predictive performance
on two clinical datasets. These positive results provide an impetus
for additional research on patient-specific model averaging meth-
ods for predicting clinical outcomes.
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