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Abstract

Developing feature selection algorithms that move beyond a pure correlational to a more
causal analysis of observational data is an important problem in the sciences. Several algo-
rithms attempt to do so by discovering the Markov blanket of a target, but they all contain
a forward selection step which variables must pass in order to be included in the condition-
ing set. As a result, these algorithms may not consider all possible conditional multivariate
combinations. We improve on this limitation by proposing a backward elimination method
that uses a kernel-based conditional dependence measure to identify the Markov blanket in
a fully multivariate fashion. The algorithm is easy to implement and compares favorably
to other methods on synthetic and real datasets.

1. Introduction

Causality refers to a relation between a variable and another variable such that the lat-
ter variable is understood to be a consequence of the former. Three groups of methods
have been described in the literature to infer causality from observational data. The most
popular group includes conditional independence test methods such as PC (Spirtes et al.,
2000) and FCI (Spirtes, 2001) that attempt to construct a graph representing all causal
relationships in a dataset. The second group takes a more local approach by identifying the
Markov blanket, or those variables that are conditionally independent on a target given the
remaining variables; examples include IAMB (Tsamardinos & Aliferis, 2003), HITON-MB
(Aliferis et al., 2003), and MMMB (Tsamardinos et al., 2006). The final group identifies
pair-wise causal relationships by comparing the complexities of a forward and backward
model such as LiNGAM (Shimizu et al., 2006) and additive noise models (Hoyer et al.,
2008). However, to remain tractable, all of these methods do not consider all possible
multivariate interactions between variables. As a result, they may fail to identify subtle
dependencies.

A number of kernel-based methods have recently been developed that perform multivariate
conditional dependence measurements in reproducing kernel Hilbert space (RKHS; Fuku-
mizu et al., 2009; Zhang et al., 2011). In this paper, we take advantage of these methods by
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incorporating either one of two kernel-based conditional dependence measures (K-CDMs;
Fukumizu et al., 2009; Zhang et al., 2011) in a backward elimination algorithm to identify
the Markov blanket in a fully multivariate fashion. The rest of this paper is structured as
follows. We first provide background on Bayesian networks in Section 2 and then discuss
related work in Section 3. In Section 4, we describe the new algorithm that identifies the
Markov blanket of a target by iteratively eliminating variables that minimize K-CDM. We
finally provide results comparing the proposed algorithm with other feature ranking and
subset selection methods in Section 5. Section 6 provides a brief conclusion.

2. Background

From here on, upper-case letters in italics will denote single variables, and upper-case letters
in bold italics will denote sets of variables. A Bayesian network is a probabilistic model that
combines a directed acyclic graph (DAG) with parameters to represent a joint probability
distribution over a set of random variables. More specifically, the DAG contains a node for
every variable in the dataset, and an edge between a pair of nodes R − S is absent if R
is independent of S given T for some T , and edge R − S is present if R is dependent on
S given T for all T (Friedman & Koller, 2009). The absence of edges in a DAG can be
determined by performing tests of conditional independence. Two variables R and S are
conditionally independent given a third variable T if and only if the value of R provides
no information about the value of S and vice versa given the value of T . In mathematical
notation, R ⊥⊥ S|T .

We now define Y as a target node, and X as the entire dataset without Y . The Markov
blanket of Y (MB(Y )) is a subset of X that includes the target’s parent, child and spousal
nodes. MB(Y ) can be identified by showing that a target node is conditionally independent
of all other nodes given its parents, children and spouses:

Y ⊥⊥ {X\MB(Y )} |MB(Y )⇔ Y ⊥⊥ X|MB(Y ). (1)

In this paper, we assess conditional dependence between arbitrary distributions within
reproducing kernel Hilbert spaces (RKHSs). Specifically, we map X and Y into RKHSs
F and G respectively using two positive semidefinite kernels KX : X × X → R and
KY : Y×Y → R. There then exists a conditional cross-covariance operator ΣY Y |X : G → G
for any function g ∈ G as well as an inner product 〈·, ·〉G such that:

〈
g,ΣY Y |Xg

〉
G = EX

[
V arY |X [g (Y ) | X]

]
, (2)

which represents the residual errors of predicting g(Y ) with X (Fukumizu et al., 2009).

We now denote Xs as some subset of the variables in X such that Xs ⊆ X. Then, the
conditional cross-covariance operator exhibits the following property: ΣY Y |Xs

≥ Σ
Y Y |X,

where the order is determined by the trace operator, and the equality holds when the
subset Xs includes MB(Y ) so that Y ⊥⊥ X|Xs.

2



Markov Blanket Ranking using Kernel-based Conditional Dependence Measures

Empirically, we can compute the kernel matrices KXs and KY from a sample size of n drawn
i.i.d. from the distribution P (X, Y ). The trace of the empirical conditional cross-covariance
operator is then defined by:

M1 = tr
(
GY (GXs + nεIn)−1

)
, (3)

where GXs =
(
In − 1

n1n1n
T
)
KXs

(
In − 1

n1n1n
T
)

with n representing sample size, In an
n× n identity matrix, and 1n a vector of ones. The regularization term ε→ 0 is added for
the inversion. A similar measure proposed by Zhang et al. (2011; Equation 12) is based on
eigenvalue decompositions of centralized kernel matrices:

M2 = tr (TXsGY TXs) , (4)

where TXS
= ε (GXs + εIn)−1. Unlike M1, this new measure was developed so that the

authors could create a test of conditional independence using a statistic shown in their
Equation 13 whose null distribution is approximated by a gamma distribution. Note that
both Y and Xs can each be multivariate with either of the two K-CDMs. Moreover, both
K-CDMs do not make assumptions about the data distributions of Y and Xs or their
functional relationship.

3. Related Work

The original Hilbert Schmidt Independence Criterion (HSIC; Gretton et al., 2005) is a sen-
sitive measure of dependence between two kernels, where larger values denote a greater
degree of dependence. Song et al. (2007) developed an algorithm called BAHSIC that uses
HSIC for feature selection by embedding the target in the first kernel and the remaining
variables in the second kernel; the algorithm then uses backward elimination to remove
variables from the second kernel that maximize HSIC. In practice, the algorithm can detect
subtle dependencies and help increase classification accuracy to a greater extent than many
other feature selection algorithms.

HSIC unfortunately can have difficulty in detecting all of the variables in MB(Y ), since
some of these variables may only show a weak association with the target. Measures of
conditional dependence may instead be more useful in this regard. Nevertheless, correctly
identifying the subset of variables to condition on can be difficult as the number of possible
subsets grows exponentially with the number of variables (Statnikov et al., 2013). Markov
blanket discovery algorithms including IAMB, HITON-MB, and MMMB thus incorporate a
forward selection phase, where variables are required to display an association to the target
before being included in the conditioning set. For example, the HITON-MB algorithm relies
on a univariate association between the tested variable R and the target Y . On the other
hand, the IAMB and MMMB algorithms test the association between R and Y relative
to a growing conditioning set of previously selected variables. In other words, both IAMB
and MMMB initially rely on a univariate relationship with Y but gradually become more
multivariate. These forward selection strategies can be suboptimal because some variables
may reveal a relationship with the target only when all the other variables in MB(Y ) are
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included in the conditioning set.

Several other limitations have been described in the literature. First, HITON-MB and
MMMB may identify incorrect variables in the second step, since there are certain condi-
tions under which variables not in MB(Y ) can enter MB(Y ) as described in Peña et al.
(2006). Moreover, both these algorithms rely on HITON-PC and MMPC which also have
shortcomings. The PC algorithms assume that if A is not a member of the set of variables
which are parents and children of Y (pc(Y )), then Y ⊥⊥ A|B for some B ⊆ pc(Y ), so any
node not in pc(Y ) is removed, which is not always true (an example of such a circumstance
is in Table 2 of Peña et al. (2006)). Second, Lou & Obradovic (2010) highlight that con-
ditional independence testing may become unreliable with small sample sizes. As a result,
they have instead promoted algorithms that rely on sensitive dependence measurements
such as HSIC as opposed to tests in order to discover MB(Y ). However, in this paper,
we will show that a new algorithm using Equation 3 or 4 can in fact perform very well by
similarly avoiding statistical testing.

The main ideas used in this paper are motivated by the work of Fukumizu et al. (2009),
in which the authors introduced a method of kernel dimension reduction using Equation 3.
However, their method cannot be directly used to find MB(Y ), since it finds orthogonal
projections of X with respect to kernel-induced feature space. In this paper, we select
variables with respect to input space to make the kernel-based conditional dimensionality
reduction method more applicable to MB(Y ) discovery.

4. The Algorithm

4.1 Main Idea

We discover MB(Y ) using backward elimination. First, consider measuring the conditional
dependence of Y and X given Xs, where Xs is set to X. Clearly, the conditional dependence
measure is zero, since X cannot explain Y given itself. Next, consider removing a variable
from the conditioning set Xs. Since a target is completely shielded from the other variables
given its MB(Y ) by the definition of a Markov blanket, eliminating a variable in MB(Y )
from Xs will cause the K-CDM to return a larger value (assuming enough sample size),
since now X can better explain Y when Xs is missing a variable in MB(Y ). In contrast,
removing a variable not in MB(Y ) will make no difference, since the conditional dependence
measure is still zero if Xs contains MB(Y ). This process of successively testing the removal
of a variable in the conditioning set Xs and then permanently removing the variable that
minimizes K-CDM is repeated until Xs is empty.

4.2 Implementation

The proposed method is a feature ranking algorithm that performs backward elimination
using K-CDM. The pseudo-code for the method is shown in Algorithm 1, such that K-CDM
is written as:

M∗(Y,Xs, σ),
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which denotes M1 or M2 evaluated with Y , Xs, and σ such that σ is the set of kernel
hyperparameters (if any).

Algorithm 1: Backward Elimination

1. Input: Target feature Y , non-target features X
2. Output: Non-target features in ascending order X†

3. Xs ← X
4. X† ← ∅
5. repeat
6. X ← min

X∈Xs

M∗(Y, {Xs\X}, σ), σ ∈ Ξ

7. Xs ← Xs\X
8. X† ← X† ∪X
9. until Xs = ∅

The algorithm works as follows. It first computes K-CDM for every variable eliminated from
the conditioning set Xs using appropriate kernel hyperparameters σ (if any) chosen with
a user defined method Ξ. For example, the Gaussian sigma hyperparameter can be defined
as the median distance between data points. The identified variable X which minimizes K-
CDM when removed is then permanently removed from Xs and placed into X†. The above
procedure is repeated until Xs is empty. The underlying principle behind the algorithm is
thus to find the variable combination that can best explain the dependence between Y and
X by iteratively eliminating those variables that can least explain the dependence.

Note that the above procedure has some advantages over previous methods from the nature
of directly performing backward elimination rather than first performing a forward selection
step. First, the method considers all possible multivariate relationships in MB(Y ), since
all variables in MB(Y ) are eliminated from Xs after the other variables assuming sufficient
sample size to detect the relationships. Second, the proposed algorithm outputs a ranking
of variables defined by the relative amounts of conditional dependence across the entire
dataset. As a result, the ranking represents the relative importance of each of the variables
in MB(Y ).

Algorithm 2: Forward Selection

1. Input: Target feature Y , non-target features X
2. Output: Non-target features in descending order X†

3. Xs ← X
4. X† ← ∅
5. repeat

6. X ← min
X∈Xs

M∗(Y, {X† ∪X}, σ), σ ∈ Ξ

7. Xs ← Xs\X
8. X† ← X† ∪X
9. until Xs = ∅

The forward selection procedure (Algorithm 2) is faster and can be implemented by includ-
ing variables in X† in line 6 rather than removing variables from Xs. However, this method
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underperforms backward elimination in practice and is not guaranteed to return MB(Y )
in the infinite sample limit, since conditional dependence is not assessed within the context
of the other variables in X. Also note that the output is in descending order in X† instead
of in ascending order.

4.3 Proof of Correctness

Theorem. The final variables in X† from Algorithm 1 will include MB(Y ) under the
assumptions that (1) K-CDM is defined by Equation 3 or 4, and (2) the dataset X has an
infinite sample size and is drawn i.i.d. from a joint probability distribution faithful to a
DAG.

Proof. First, a lower value returned from Equation 3 or 4 denotes a higher degree of
conditional independence between Y and X given Xs than a higher value by design. Second,
Y is conditionally independent of X given MB(Y ) by the definition of a Markov blanket.
As a result, K-CDM is guaranteed to return a higher value every time a variable in MB(Y )
is tested for removal in line 6 compared to a variable not in MB(Y ) assuming an infinite
sample size, where the data points are drawn i.i.d. from a probability distribution faithful
to a DAG. Then, if Xs contains variables in and not in MB(Y ), a variable not in MB(Y )
will be eliminated earlier from Xs in line 7. The variable eliminated from Xs will then be
placed into X† in line 8. As a result, the final variables in X† will include MB(Y ). �

4.4 Time Complexity

We assume that we remove 1− β of Xs at every iteration. Then, the i th iteration of Algo-
rithm 1 takes O(βi−1dn3) where d represents the total number of variables and n3 represents
the inversion of the kernel when calculating K-CDM. Similarly, the i th iteration in Algo-
rithm 2 has the same computational complexity if we iterate over every variable, but we can
also stop the algorithm after obtaining t variables. In this case, the total number of itera-
tions γ is t = d [1− (1− β)γ ] which will require

∑γ−1
i=0 d(1− β)i = d [1− (1− β)γ ]/β = t/β

operations. Algorithm 2 thus takes O(tn3/β) time to discover t variables

5. Experiments

5.1 Evaluation

We included two K-CDMs in Algorithm 1 by using Equation 3 or 4, which we will now de-
note as Proposed-F and Proposed-Z respectively. We compared Proposed-F and Proposed-Z
with four feature ranking methods including BAHSIC, Relief-F and SVM-RFE. Rankings
were normalized to compare variables with different sized Markov blankets as follows. If the
variables in MB(Y ) were correctly identified back-to-back, then those variables were given
the same rank. However, a break in the correct identification led to a higher rank. For
example, if variables 2, 3 and 4 are in MB(Y ) while 1, 5, and 6 are not, then an output of
6,3,5,4,2,1 in ascending order would be converted to the ranking 5,4,3,2,2,1. The algorithm
which provides a lower mean rank of MB(Y ) was then judged to perform better. In the
example, the mean rank is 2.666, since the ranks of MB(Y ) are 4,2,2.
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Next, we used the following accuracy measure in order to compare Algorithm 1 with three
conditional dependence-based feature subset selection methods including IAMB, HITON-
MB and MMMB:

A
(
X†c,MB(Y )

)
=

∣∣∣X†c ∩MB (Y )
∣∣∣∣∣∣X†c ∪MB (Y )
∣∣∣ ∗ 100, (5)

where X†c is the subset output from the conditional dependence algorithms or, for Proposed-
F and Z, X†c is X† clipped to the size of MB(Y ). For example, if variables 2, 3 and 4 are
in MB(Y ) while 1, 5, and 6 are not, then an output of 6,3,5,4,2,1 from Algorithm 1 would

be converted 4,2,1. Also,
∣∣∣X†c ∩MB(Y )

∣∣∣ is the cardinality of the intersection of the subset

X†c and the known MB(Y ) and
∣∣∣X†c ∪MB(Y )

∣∣∣ is the cardinality of the union. Note that

score A is equal to 100 when the algorithm outputs the exact MB(Y ). On the other hand,

decreasing the cardinality of X†c by failing to identify parts of the MB(Y ) or increasing the

cardinality of X†c by random guessing both decrease A.

5.2 Synthetic Datasets

Due to the debate presented by Lou and Obradovic (2010), we first evaluated the reliability
of the dependence and conditional dependence measures in correctly identifying MB(Y )
under multiple conditions by comparing BAHSIC to Proposed-F and Proposed-Z (Figure
1). We compared these two algorithms because BAHSIC, Proposed-F and Proposed-Z have
similar algorithmic structures but the former uses HSIC to measure dependence while the
latter two use a K-CDM. We constructed synthetic Markov blankets containing 6 continuous
variables (2 parents, 2 children, 2 spouses) by (1) generating the data points of 2 parents and
2 spouses by drawing from a Gaussian distribution with a standard deviation of 1, (2) sum-
ming the 2 parents and adding Gaussian noise with a standard deviation of 1 to create the
data points of Y , (3) similarly summing the spouses and Y and adding noise to create the
data points of the 2 children. Thus, variables in MB(Y ) were connected by linear weights
of 1. We then equipped BAHSIC, Proposed-F and Proposed-Z with linear kernels. In Fig-
ure 1, the solid lines represent the average ranking of MB(Y ) with the corresponding 95%
confidence intervals shown as two dashed lines of the same color. For the first experiment,
we introduced 10 extraneous variables drawn from a Gaussian distribution with a standard
deviation of 1 to the original 7 variables (target plus 6 MB(Y ) variables) and varied the
number of data points from 1 to 500. We found that BAHSIC performed better in the small
sample size range (<75) but was then overtaken by Proposed-F and Proposed-Z. In order
to understand this phenomenon, recall that the parents and children display an association
to the target in this case whereas the spouses do not. As a result, BAHSIC cannot detect
the 2 spouses and saturates at an average rank of 3, whereas Proposed-F and Proposed-Z
continue to improve. For the second experiment, we raised the noise level throughout the
entire dataset from 0 to 5 standard deviations while keeping the sample size constant at
70 corresponding to 10 data points for the target and each of the 6 variables in MB(Y ).
Proposed-F and Proposed-Z performed better up to about a noise standard deviation of 1,
suggesting that it may be more reliable to search for MB(Y ) using dependence measures
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Figure 1: Results from synthetic datasets assessing the accuracy of dependency and condi-
tional dependency-based methods in detecting MB(Y ) by comparing Proposed-F
and Proposed-Z to BAHSIC. Solid lines represent the average rank of the Markov
blanket and dotted lines represent the 95% confidence interval. Proposed-F and
Proposed-Z outperform BAHSIC except in low sample size and high noise condi-
tions as indicated by the arrows. Moreover, BAHSIC consistently fails to identify
the spouses by saturating at a rank of 3, whereas the proposed algorithm does
not.

instead of conditional dependence measures in high noise situations. This is expected, since
the spouses need a common child to be predictive (Guyon et al., 2007), and thus their signal
may be easily erased with noise. Next, we re-connected the 17 variables with 1 to 100 edges,
again with a sample size of 70. We also varied the number of extraneous variables from 1 to
128 with the same sample size. Finally, we changed the value of the linear weights from 0.1
to 2. Proposed-F and Proposed-Z outperformed BAHSIC in these last three experimental
conditions across all values. Moreover, Proposed-F and Proposed-Z gave identical to near
identical results in all of the 5 experiments; the difference was greatest in the extraneous
variables experiment, but it was only by 2-3 ranks with 64 and 128 extraneous variables.
These results suggest that both K-CDMs can perform better than dependence based meth-
ods in correctly identifying MB(Y ) when the noise level is low enough and the sample size
is large enough.

We compared Proposed-F and Proposed-Z to IAMB with Fisher’s Z-test for the second
set of synthetic experiments (Figure 2). We wanted to compare the accuracy of directly
performing backward elimination on the dataset using a K-CDM instead of first performing
statistical testing with a forward selection step. The HITON-MB and MMMB algorithms
were not included, since they are data efficient modifications of IAMB which do not help
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Figure 2: Results from synthetic datasets assessing the impact of a forward selection step
by comparing Proposed-F and Proposed-Z to IAMB. Solid lines and dotted lines
represent the average value of the accuracy measure in Equation 5 and 95% con-
fidence intervals, respectively. Proposed-F and Proposed-Z outperform IAMB in
all tested conditions. Notice that IAMB performs poorly in the edges experi-
ment as indicated by the arrow, since statistical testing becomes unreliable with
a growing MB(Y ) size but fixed sample size.

in better assessing the impact of the forward selection step; however, these two algorithms
are included in the next section. We found that Proposed-F and Proposed-Z outperformed
IAMB across all 5 experiments, since the forward selection step may prevent IAMB from
considering all multivariate combinations when discovering MB(Y ). Note that IAMB per-
forms particularly poorly in the edges experiment as the Markov blanket size grows because
statistical testing becomes unreliable with a fixed sample size. On the other hand, Proposed-
F and Proposed-Z overcome this problem by not relying on statistical testing.

5.3 Expert-Designed Models and Real-World Datasets

We used three publicly available expert-designed Bayesian network models including Alarm
(36 variables), Child (20), and Insurance (27) as well as two real-world datasets including
CYTO (11; Sachs et al., 2005) and the U.S. Linked Infant Birth and Death Dataset from
1991 (87; Mani & Cooper, 1999). CYTO is a dataset of T-lymphocyte protein-protein in-
teractions, and Infant is a dataset of clinical outcomes and decisions regarding infant births;
in both of these, portions of MB(Y ) have been experimentally verified and confirmed by
experts. We appropriately incorporated RBF kernels with sigma set to the median distance
between data points in all kernel methods to detect discrete non-linear patterns. The IAMB,
HITON-MB, and MMMB algorithms were implemented with the G2 test for discrete data.
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Figure 3: Results from datasets created from expert-designed models. Solid lines and dotted
lines again represent the average ranks of the Markov blanket or the average value
of the accuracy measure in Equation 5 and 95% confidence intervals, respectively.
Proposed-F and Proposed-Z outperform all ranking methods across the larger
sample sizes and subset selection methods across all of the sample sizes.

We iterated over all variables to obtain the mean rank and accuracy scores over different
sample sizes. Results are shown in Figures 3 and 4 for the expert-designed models and
real-world datasets, respectively.

The results show that both Proposed-F and Proposed-Z outperform other feature ranking
and subset selection methods in correctly identifying MB(Y ) with larger sample sizes in
the datasets of expert-designed models. Notice that the dependency based method BAH-
SIC plateaus at a relatively small sample size, but the proposed algorithm’s performance
continues to improve with larger sample sizes. These results held when using either the
method from Fukumizu et al. (2009) or Zhang et al. (2011) as the K-CDM. For the real-
world datasets, Proposed-F and Z outperformed all other conditional dependence-based
algorithms. The results are less clear when comparing against the ranking algorithms in
CYTO, since no algorithm consistently outperforms the others, but we observed that the
proposed algorithm significantly outperforms Relief-F on occasion. For Infant, the pro-
posed algorithm was outperformed by BAHSIC, since the Markov blankets in this dataset
only contain parents and children; in this situation, kernel-based dependency methods may
perform better, as we observed in the synthetic experiments.

6. Conclusion

We introduced a feature ranking algorithm that is useful for discovering MB(Y ). The
algorithm uses a K-CDM to eliminate variables using backward elimination. Overall, the
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Figure 4: Results from real-world datasets. Proposed-F and Proposed-Z outperform all
subset selection methods across all of the sample sizes. However, both methods
are consistently outperformed by BAHSIC in Infant.

method exhibits superior performance in synthetic data and in real datasets on average
when compared to several feature ranking and subset selection methods.

Acknowledgments

We thank Dr. Subramani Mani for providing the U.S. Linked Infant Birth and Death
1991 dataset. This research was funded by the National Library of Medicine grant T15
LM007059-24 to the University of Pittsburgh Biomedical Informatics Training Program and
the National Institute of General Medical Sciences grant T32 GM008208 to the University
of Pittsburgh Medical Scientist Training Program.

References

C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON: a novel Markov blanket algorithm
for optimal variable selection. AMIA 2003 Annual Symposium Proceedings, 21–25, 2003.

N. Friedman, and D. Koller. Probabilistic Graphical Models: Principles and Techniques.
The MIT Press, 2009.

11



Eric V. Strobl & Shyam Visweswaran

K. Fukumizu, F. R. Bach, and M. I. Jordan. Kernel dimension reduction in regression.
Annals of Statistics, 37(5):1871–1905, 2009.

A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf. Kernel methods for
measuring independence. Journal of Machine Learning Research, 6:2075–2129, 2005.

I. Guyon, C. F. Aliferis, and A. Elisseeff. Computational Methods of Feature Selection,
chapter Causal Feature Selection. Chapman and Hall, 2007.

P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery
with additive noise models. Neural Information Processing Systems, 2008.

Q. Lou and Z. Obradovic. Feature selection by approximating the Markov blanket in a
kernel induced space. European Conference on Artificial Intelligence, 797-802, 2010.

S. Mani and G. F. Cooper. A study in causal discovery from population-based infant birth
and death records. AMIA Annual Fall Symposium, 319, 1999.

J. M. Pea, J. Bjrkegren, and J. Tegner. Scalable, efficient and correct learning of Markov
boundaries under the faithfulness assumption. Eighth European Conference on Symbolic
and Quantitative Approaches to Reasoning under Uncertainty, 136–147, 2005.

K. Sachs, O. Perez, D. Pe’er, D. Lauenburger, and G. Nolan. Causal protein-signaling net-
works derived from multiparameter single-cell data. Science, 308, 2005.

S. Shimizu, P.O. Hoyer, A. Hyvrinen, and A.J. Kerminen. A linear, non-Gaussian acyclic
model for causal discovery. Journal of Machine Learning Research, 7:2003-2030, 2006.

L. Song, J. Bedo, K. M. Borgwardt, A. Gretton, and A. Smola. Gene selection via the
BAHSIC family of algorithms. Bioinformatics, 23(13):490–498, 2007.

P. Spirtes. An anytime algorithm for casual inference. Proceedings of the Eighth Interna-
tional Workshop on Artificial Intelligence and Statistics, 213–221, 2001.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, 2nd edition, 2000.

A. Statnikov, N. Lytkin, J. Lemeire and C. F. Aliferis. Algorithms for discovery of multiple
Markov boundaries. Journal of Machine Learning Research 14, 499-566, 2013.

I. Tsamardinos and C. F. Aliferis. Towards principled feature selection: relevancy, filters
and wrappers. Proceedings of the Ninth International Workshop on Artificial Intelligence
and Statistics, 2003.

12



Markov Blanket Ranking using Kernel-based Conditional Dependence Measures

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian net-
work structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-based conditional independence
test and application to causal discovery. Proceedings of Uncertainty in Artificial Intelli-
gence, 804-813, 2011.

13


