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BACKGROUND: Esophageal adenocarcinoma (EAC) is associated with a dismal prognosis. The identification of cancer biomarkers

can advance the possibility for early detection and better monitoring of tumor progression and/or response to therapy. The authors

present results from the development of a serum-based, 4-protein (biglycan, myeloperoxidase, annexin-A6, and protein S100-A9) bio-

marker panel for EAC. METHODS: A vertically integrated, proteomics-based biomarker discovery approach was used to identify can-

didate serum biomarkers for the detection of EAC. Liquid chromatography-tandem mass spectrometry analysis was performed on

formalin-fixed, paraffin-embedded tissue samples that were collected from across the Barrett esophagus (BE)-EAC disease spectrum.

The mass spectrometry-based spectral count data were used to guide the selection of candidate serum biomarkers. Then, the serum

enzyme-linked immunosorbent assay data were validated in an independent cohort and were used to develop a multiparametric risk-

assessment model to predict the presence of disease. RESULTS: With a minimum threshold of 10 spectral counts, 351 proteins were

identified as differentially abundant along the spectrum of Barrett esophagus, high-grade dysplasia, and EAC (P<.05). Eleven proteins

from this data set were then tested using enzyme-linked immunosorbent assays in serum samples, of which 5 proteins were signifi-

cantly elevated in abundance among patients who had EAC compared with normal controls, which mirrored trends across the disease

spectrum present in the tissue data. By using serum data, a Bayesian rule-learning predictive model with 4 biomarkers was developed

to accurately classify disease class; the cross-validation results for the merged data set yielded accuracy of 87% and an area under

the receiver operating characteristic curve of 93%. CONCLUSIONS: Serum biomarkers hold significant promise for the early, noninva-

sive detection of EAC. Cancer 2014;120:3902-13. VC 2014 American Cancer Society.
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INTRODUCTION
The incidence of esophageal adenocarcinoma (EAC) is rapidly rising, outpacing the rates of increase for all other cancers.
The number of patients affected per year is up to 600% higher than it was in the 1970s.1,2 In addition, EAC is associated
with a dismal prognosis, with a 5-year survival rate<15%. Although survival and prognosis depend on the stage of the dis-
ease, unfortunately, because the esophagus is a distensible organ, the majority of patients who develop EAC do not sense
difficulty swallowing until the tumor is advanced.3 Accordingly, there is an urgent need for improved risk stratification to
facilitate early detection and thereby reduce mortality from EAC.4

Currently, without clinical risk factors that signal the early development of EAC, the identification of early stage and
curable disease is only possible through endoscopic Barrett esophagus (BE) screening for patients who have symptoms of gas-
troesophageal reflux disease (GERD).5,6 Those diagnosed with BE then typically undergo lifetime endoscopic surveillance
for the development of malignancy.7 However, 95% of patients who develop EAC have never undergone BE screening
before their cancer diagnosis, and up to 57% of patients who develop EAC do not report antecedent GERD symptoms.8,9

The identification of cancer biomarkers raises the possibility for early detection and for better monitoring of tumor
progression and/or response to therapy. Protein biomarkers that have been identified and are in regular clinical use for
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different tumors include carcinoembryonic antigen,
prostate-specific antigen, a-fetoprotein, and cancer anti-
gen 125. The development of biomarkers is even more
important for cancers like EAC, which typically are diag-
nosed at an advanced disease stage and have poor long-
term survival rates with the currently used clinical man-
agement paradigm.10

Toward this goal, in the current report, we present
results from a serum-based, 4-protein biomarker panel for
EAC (comprising biglycan [BGN], annexin-A6
[ANXA6], myeloperoxidase [MPO], and protein S100-
A9 [S100A9] [B-AMP]) that was identified using a verti-
cally integrated, proteomics-based biomarker discovery
approach initially to identify candidate tissue and then to
identify serum biomarkers. We observed that these pro-
teins were clinically relevant and followed a distinct pat-
tern of expression along the sequence of disease
progression. These data were subsequently used to de-
velop a multiparametric risk-assessment model for pre-
dicting the presence of disease.

MATERIALS AND METHODS
Figure 1 outlines the overall study schema, including
patient populations and the methods used. This study was
initiated in 2009 and completed in 2013. Institutional
Review Board approval was obtained before the initiation
of the study, and informed consent was obtained at the
time of tissue collection.

Proteomic Biomarker Identification From BE,
High-Grade Dysplasia, and EAC Tissues

To identify candidate protein biomarkers associated with
disease progression, we performed a mass spectrometry-
based proteomics discovery study using appropriate
pathologically defined esophageal tissue specimens. The
tissue discovery data were generated from archival deiden-
tified, formalin-fixed, paraffin-embedded (FFPE) blocks
obtained from the Department of Pathology at the Uni-
versity of Pittsburgh. This cohort consisted of 10 samples
of BE, 11 samples of high-grade dysplasia (HGD) and 10
unpaired patient samples of advanced locoregional EAC
(see Fig. 1; tissue discovery cohort).

A single-tube experimental protocol was used to
digest proteins from FFPE tissue sections with trypsin,
and the resultant tryptic peptides were analyzed using liq-
uid chromatography-tandem mass spectrometry (LC-
MS/MS) for an exploratory proteomic analysis of BE,
HGD, and EAC. Approximately 40,000 cells per sample
were collected by laser-capture microdissection (LCM);
the tryptic digests were analyzed in duplicate by nanoflow

LC-MS/MS using a hybrid linear ion trap-orbitrap mass
spectrometer. The primary MS/MS data were searched
with the SEQUEST data-analysis program (Thermo-
Fisher Scientific Inc., Waltham, Mass) against the human
proteome database for peptide identification and against a
“decoy” human proteome database in which the protein
sequences are reversed to maintain a false-discovery rate
<1%.11 Next, we integrated the resulting peptide lists
using a suite of in-house, MATLAB-enabled relational
database tools (The MathWorks, Natick, Mass) to yield
spectral counts for the identified proteins.

A quantitative estimate of the relative abundance of
the identified proteins from these data sets was obtained
by comparison of their spectral count values between BE-
derived, HGD-derived, and EAC-derived cells. To deter-
mine statistically significant, differentially abundant pro-
teins from each tissue type, we applied a Kruskal-Wallis
nonparametric analysis of variance test (the Kruskal-
Wallis test is a 1-way analysis of variance by ranks and
determines statistically significant differences between 2
or more groups of an independent variable on a continu-
ous or ordinal, dependent variable); proteins with signifi-
cant differences were used for further hierarchical
clustering analysis.

Digestion of LCM FFPE Tissues

Heat-induced trypsin digestion was applied to the LCM
cells to extract peptides as previously described.12 Samples
were resuspended in 100 lL of 100 mM NH4HCO3/
20% acetonitrile, then heated at 90oC for 1 hour, and
stored at 65oC for 2 hours. Trypsin digestion was carried
out by adding 500 ng of sequencing grade, modified tryp-
sin (Promega, Madison, Wis) followed by an overnight
incubation at 37oC. After a rapid spin, the aqueous solu-
tion was transferred to a new Eppendorf tube, lyophilized,
and then resuspended in 100 lL 0.1% trifluoroacetic acid
(TFA), followed by desalting with PepClean C-18 Spin
Columns (Pierce, Rockford, Ill), vacuum drying, and
resuspension in 25 lL 0.1% TFA. The BCA assay (Pierce)
was used to determine peptide concentrations.

LC-MS/MS Analysis of Peptides

The tryptic digests were analyzed in duplicate (1 lg for
each injection) by reverse-phase LC-MS/MS using a
nanoflow LC system (Dionex Ultimate 3000; Dionex
Corporation, Sunnyvale, Calif) coupled online to an
LTQ/Orbitrap XL hybrid mass spectrometer (Thermo-
Fisher Scientific Inc., San Jose, Calif). Peptide separation
was performed using fused silica capillary columns (75-
lm inner diameter3360-lm outer diameter320-cm
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long; Polymicro Technologies, Phoenix, Ariz), which
were slurry packed in-house with 5-lm, 300-angstrom
pore size C-18 silica-bonded stationary phase (Jupiter;
Phenomenex, Torrance, Calif). After sample injection
onto a C-18 trap column (Dionex Corporation), the col-

umn was washed for 3 minutes with mobile phase A (2%
acetonitrile, 0.1% formic acid) at a flow rate of 30 lL per
minute. Peptides were eluted using a linear gradient of
0.30% mobile phase B (0.1% formic acid in acetonitrile)
per minute for 130 minutes, then to 95% B for an

Figure 1. The study schema is illustrated with the patient populations and methods used. Serum protein biomarker discovery was
guided by tissue-based proteomics followed by analysis and evaluation in serum samples using enzyme-linked immunosorbent
assays.
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additional 10 minutes, all at a constant flow rate of 250
nL per minute. Column washing was performed at 95%
mobile phase B for 20 minutes, after which the column
was re-equilibrated in mobile phase A before subsequent
injections. The LTQ/Orbitrap XL mass spectrometer was
configured to collect high-resolution (R560,000 at a
mass-to-charge [m/z] ratio of 400) broadband mass spec-
tra (m/z ratio, 375-1800) from which the 7 most abun-
dant peptide molecular ions dynamically determined
from the mass spectrometry scan were selected for MS/
MS using a 30% normalized, collision-induced dissocia-
tion energy. Dynamic exclusion was used to minimize
redundant selection of peptides for MS/MS analysis.

Mass Spectrometry and MS/MS Data Analysis

For relative quantification using spectral count, tandem
mass spectra were searched against the UniProt human
proteome database (June 2009 release) from the European
Bioinformatics Institute (available at: http://www.ebi.a-
c.uk/integr8; accessed November 8, 2010) using
SEQUEST (ThermoFisher Scientific Inc.) with variable
modification of methionine (oxidation, 115.9949 Da).
The mass tolerance for the precursor ions and fragment
ions were set to 20 ppm and 1 Da, respectively. Peptides
were considered legitimately identified if they achieved
specific charge state and proteolytic cleavage-dependent
cross-correlation (Xcorr) scores of 1.9 for [M1H]11, 2.2
for [M12H]21, and 3.5 for [M13H]31, and a minimum
delta correlation score (DCn) of 0.08. An in-house MAT-
LAB script was used to combine the total number of
collision-induced dissociation spectra that resulted in pos-
itive identification of any peptides for a given protein
(spectral count).

Hierarchical clustering was carried out using MAT-
LAB (The MathWorks). The values for spectral counts
were standardized for each protein so that each had a
mean of 0 and a standard deviation of 1. Both sample dis-
tance and protein feature distance were calculated using
Pearson correlation, and average linkage was used for the
clustering of both samples and protein features.

Patient Study Populations and Serum Sample
Collection, Processing, and Storage

For an initial evaluation of the abundances of the candi-
date protein biomarkers in serum, a serum discovery data
set of samples was collected from a total of 32 patients,
including 20 patients who had a clinical diagnosis of
GERD and 12 patients who had advanced, locoregional
EAC (T2N1 to T3N0) from the Esophageal Risk Registry
at the University of Pittsburgh in 2010.

For this purpose, venous blood samples (4 mL) from
normal controls with GERD and patients with EAC were
drawn using standard venipuncture into red/yellow-top
Vacuette Serum Clot Activator with Gel Separator blood
collection tubes (catalog no. 454067; Greiner-Bio-One,
Monroe, NC) and were placed upright for 30 to 60
minutes until clot formation. The tubes were centrifuged
in a swinging bucket rotor (31300g for 20 minutes), and
the serum was pipetted and distributed as 200-lL aliquots
into 1.5-mL cryovials for storage at 280�C. To ensure
consistency and reliability in the subsequent analyses, no
more than 1 freeze-thaw cycle was allowed for any sample.

Enzyme-Linked Immunosorbent Assay Testing
for the Candidate Serum Protein Biomarker
Panel

Commercial enzyme-linked immunosorbent assay
(ELISA) kits were used to quantify the abundance of the
candidate biomarkers in serum (Supporting Table 1; see
online supporting materials). The following ELISA kits
were used: alpha-1-antitrypsin (A1A), myeloperoxidase
(MPO), and apolipoprotein A-I (APO A1) (catalog no.
E-80A, E-80PX, and E80AP1, respectively; Immunology
Consultants Laboratory, Inc., Portland, Ore); resistin
(catalog no. DRSN00; R&D Systems, Minneapolis,
Minn); isoform 1 of fibronectin (catalog no. EF1045;
Bioxys, Brussels, Belgium); lymphocyte cytosolic protein
1 (LCP1) (catalog no. ABIN415176; Antibodies-
Online.com, Atlanta, Ga); Cathespin B (catalog no.
SEC964Hu; USCNK Life Science Inc., Wuhan, China);
protein S-100A9/MRP14, biglycan, and annexin A6 (cat-
alog no. CY-8062, SE9822HU, SE92345HU, respec-
tively; CedarLane, Burlington, NC); and cellular
fibronectin (catalog no. 6030010; Biohit, Helsinki, Fin-
land). Briefly, each assay comprised a singleplex, sandwich
ELISA with primary antibody specific for the selected pro-
tein precoated in planar arrays in 96-well microtiter
plates. After serum incubation and washing, a second bio-
tinylated antibody to a different site on the protein from
the capture epitope was introduced, and streptavidin-
horseradish peroxidase subsequently bound to the biotin-
ylated detection antibody. Chromogen-substrate reagent
was added, and the absorbance (optical density) was read
according to the manufacturer’s instructions on a Spectra-
Max M2e plate reader (Molecular Devices, Sunnyvale,
Calif) The optical density values were acquired and proc-
essed using a 4-parameter curve fit to compare the experi-
mental samples with the recombinant protein calibration
curve run in parallel wells to derive absolute protein con-
centrations adjusted for dilution.
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Validation Study of the Selected Serum
Biomarkers

A second-stage study of 67 independent serum samples
(serum validation data set) from 36 non-BE controls with
GERD and 31 patients with EAC from Roswell Park
Cancer Institute and the Allegheny Health Network was
conducted to validate the previous findings in the 32-
sample serum discovery data set from patients at the Uni-
versity of Pittsburgh. The sample-preparation and
quality-control protocols and serum ELISAs were per-
formed as described above for the serum discovery data set
using the final 5 candidate biomarkers that demonstrated
statistical discrimination between the 2 patient groups in
the initial data set.

Development of a Serum Biomarker Panel and
Predictive Model for EAC

Serum ELISA data from the discovery and validation data
sets were subsequently used to develop and test predictive
biomarker rule models using a new bioinformatics
method called the Bayesian rule-learning (BRL) system.13

The BRL is a set of classification algorithms that we previ-
ously applied successfully to biomarker discovery and vali-
dation from serum proteomic data sets for the early
detection of amyotrophic lateral sclerosis and lung
cancer.14,15

A rule model consists of a set of “IF-THEN” rules.
For example: IF (BGN>245 mg/mL) AND (S100A9>3
ng/mL) AND (MPO>120 ng/mL) THEN (class5EAC);
posterior probability5.917, P5.0, true-positive521, false-
positive51.

This rule states that, if a patient sample has the bio-
markers BGN, S100-A9, and MPO with serum levels
>245 lg/mL, >3 ng/mL, and >120 ng/mL, respectively
(defined in the IF part of the rule), then the patient has
EAC (defined in the THEN part of the rule). The poste-
rior probability indicates the probability of a true-positive
result for EAC given all positive matches from the rule.
The P value (P) of the rule is obtained from the Fisher
exact test,16 which is a significance test appropriate for cat-
egorical count data such as the number of true-positive
results and the number of positive results corresponding
to each rule.

First, the BRL system learns a Bayesian network17

constrained to the target node (EAC or non-EAC); subse-
quently, biomarkers are added as potential parents to that
node. The system learns the Bayesian network from the
training data and evaluates it using an extension of the K2
score,13,18 assuming all models are equally probable a pri-
ori (uniform prior distribution). Details of the BRL algo-

rithms have been published by Lustgarten and
colleagues.13,18,19

Because the BRL method can handle only discrete

variables, we discretized the continuous-valued ELISA data

for each biomarker into a small number of intervals using a

method we have developed called efficient Bayesian discre-

tization (EBD).20 For each biomarker, EBD identifies a

small number of intervals in the range of values for that bio-

marker that is optimal in terms of a Bayesian measure

(based on the K2 score18). It has been demonstrated that

using EBD to discretize variables yields better classification

performance on a range of biomedical data sets.21

We generated predictive rule models from the dis-
covery data set and applied them to the validation data set
using different values for the user-defined k parameter,
which is the mean of a Poisson distribution that represents
the expected number of cutoff points between the ranges
of continuous values for each biomarker. We observed
that k values of 0.5 and 1.0 yielded models with the high-
est predictive accuracies. To use the validation data as a
test set for predictive rule models, first, it was necessary to
normalize the quantities for each biomarker in the discov-
ery and validation data sets together using Equation (1).

F5

1
N1ðDrÞ

XN1ðDrÞ
p51

D
p
T

1
N2ðDV Þ

XN2ðDV Þ
q51

D
q
V

(1)

Here, F is the factor of normalization computed for
each biomarker, and N1 and N2 refer to the total number
of cases and controls, respectively, in each of the data sets:
training (DT) and test (DV), respectively. The variables p
and q iterate over instances with a specific class value
(EAC or non-EAC) in the training data set (p) and the val-
idation data set (q), respectively.

With the normalized data set values as determined
above, we generated predictive rules from the discovery
and validation data sets using each 1 independently as the
training data set and the test data set, respectively. We fur-
ther appended the discovery and validation data sets to
create a merged data set to which we then applied 10-fold
stratified cross-validation. Herein, we randomized and di-
vided the combined data set into 10 almost equal por-
tions. Then, we learned a predictive model from 9
portions of the data, designated as training data, and
tested the remaining set-aside portion. This was done 10
times by applying BRL to learn a predictive model over
each fold and testing that model to obtain performance
metrics. Finally, average accuracy, balanced accuracy
(BACC) (average of sensitivity and specificity), and area
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under the receiver operating characteristic curve
(AUROC) metrics were reported over this 10-fold cross-
fold validation. To develop the final predictive model that
we report here, we applied BRL to the complete merged
data set.

Sample Size and Statistical Analysis

The serum validation study required 26 patients per
group for an anticipated effect size of 0.8 with a calculated
study power of 80% and a target a of .05. Statistical analy-
ses were performed using SPSS software, version 20 (IBM
Corporation, Armonk, NY). A P value <.05 was consid-
ered statistically significant.

RESULTS

Tissue-Based LC-MS/MS Proteomics Biomarker
Identification

In total, 3777 proteins were identified from 62 LC-MS/
MS analyses (duplicate analyses for each of the 31 tissue
samples). The range of total spectral counts obtained in
each sample analysis ranged from 2759 to 5181 and was
significantly associated with the patient groups (Kruskal-
Wallis test; P5.0364). With a minimum threshold of 10
spectral counts, we observed that 351 proteins were differ-
entially abundant along the spectrum of BE, HGD, and
EAC (Kruskal-Wallis test; P<.05) (Fig. 2, Supporting Ta-
ble 1 [see online supporting materials]). These results
indicated nearly perfect clustering of relative protein
abundance from BE to EAC (Fig. 2).

B-AMP Biomarker ELISA

Eleven of the 351 differentially abundant proteins were
selected for evaluation in serum using ELISAs on discov-
ery sample sets based on their functional relevance and the
availability of commercial ELISA kits. The serum ELISA
results obtained from these selected tissue-based candidate
biomarkers demonstrated significantly elevated serum lev-
els for 5 of the 11 proteins tested in the EAC patient sam-
ples compared with the non-BE GERD samples in the
serum discovery data set (Fig. 3). These included
ANXA6, BGN, S100A9, MPO, and resistin. The serum
levels followed similar trends across the disease spectrum,
as observed in the corresponding tissue samples (Table 1,
Fig. 1).

Table 1 summarizes the observed differences in
candidate biomarker protein abundance measured by
LC-MS/MS and spectral counting along the disease
spectrum in FFPE-derived tissue samples and their cor-
responding concentrations in serum samples determined
by ELISA. Largely consistent with the results in the se-

rum discovery set, concentrations of all biomarkers were
significantly higher in the EAC patients’ samples from
the serum validation set with the exception of resistin
(Fig. 3).

Final Rule Model

The rule model that was obtained by applying BRL to the
merged discovery and validation ELISA data sets is illus-
trated visually in Figure 4. In the tree, the interior nodes
(indicated by ellipses) represent predictor biomarkers; the
leaf nodes (indicated by rectangles) represent the patient
counts for the number of EAC cases and controls, respec-
tively; and the labels on the arcs represent the serum bio-
marker levels. The rules, which consist of combinations of
individual biomarkers at specific cutoff concentrations

Figure 2. This is a heat-map representation from a supervised
cluster analysis of significantly differentially abundant pro-
teins that were identified from Barrett esophagus (Barretts)
in column grouping 1 (n510), high-grade dysplasia (HGDys)
in column grouping 2 (n511), and esophageal adenocarci-
noma (Adeno) tissues in column grouping 3 (n510). Individu-
ally significant proteins are represented in row groups 4, 5,
and 6. The abundance of each protein is plotted as the mean
observed spectral count for each tissue type, where red rep-
resents proteins with a normalized spectral count value >1.5,
and green represents those with values <1.5. Significance was
determined using the Kruskal-Wallis test. The results demon-
strate clear patterns of protein abundance that can be
observed correlating with Barrett esophagus (nodes 1 and 4),
high-grade dysplasia (nodes 2 and 5,) and esophageal ade-
nocarcinoma (nodes 3 and 6).
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Figure 3. (A-E) Box plots illustrate the distribution and abundance of candidate proteins in serum samples from patients with
esophageal adenocarcinoma (EAC) versus gastroesophageal reflux disease (GERD) using enzyme-linked immunosorbent assays.
Scatter plots are overlaid on top of the box plots to visualize the individual data points (annexin-A6, dilution factor [df]516003; bi-
glycan, df52003; protein S100-A9, df5253; myeloperoxidase, df5103; and resistin, df553). For each candidate serum biomarker,
the left box presents results from the discovery set, which consisted of 20 GERD samples and 12 EAC samples; and the right box
presents results from the validation set, which consisted of 36 GERD samples and 31 EAC samples. The bottom and top horizontal
lines delineating each box plot indicate the first and third quartiles of the data, respectively, and the horizontal line inside each box
plot indicates the median value. The length of the box plot whiskers is specified as 1.5 times the interquartile range (25th to 75th

quartiles) of the data. For the candidate biomarkers, t tests were used to compare the mean EAC versus GERD values in each set,
and P values <.05 were considered significant. The results were significant for all markers except resistin.
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produced by BRL, are provided in Table 2. Each rule has
a posterior probability associated with it, along with the P
value obtained from Fisher exact tests.13,16 The Fisher
exact test is applicable to situations in which the number
of samples is fairly small, as in our case, which leads to

small numbers of counts for positive results covered by a
rule. The numbers of true-positive results and false-
positive results covered by the rule also are presented. This
set of rules constitutes the predictive model that can be
applied to a future patient for whom these serum

Figure 4. This is a visual representation of the final Bayesian rule-learning model derived from the merged serum enzyme-linked
immunosorbent assay data. BGN indicates biglycan; MPO, myeloperoxidase; S100A, protein S100-A9; ANXA6, annexin-A6.

TABLE 1. Correlation of Tissue Expression Determined by Liquid Chromatography-Tandem Mass Spectrome-
try and Spectral Counting With Serum Abundance by Enzyme-Linked Immunosorbent Assay for the Final 5
Candidate Protein Biomarkersa

Serum Results: Unnormalized
Mean

P Tissue Results: Mean Spectral Counts

Protein GERD EAC T test Rank BE HGD EAC P

Myeloperoxidase, ng/mL 64.36 147.23 .00073 .00256 0.1 3.18 7.7 .01257

Resistin, ng/mL 7.93 10.05 .15967 .01852 0 0 0.8 .0094

Protein S100-A9, ng/mL 3.74 6.77 .04708 .00964 4 6.36 12.2 .03244

Biglycan, mg/mL 190.11 375.24 .00065 .00256 0 0.36 1.1 .01151

Annexin, A6 mg/mL 6.64 14.48 .01956 .02278 0.7 1.45 6.4 .00265

Abbreviations: BE, Barrett esophagus; EAC, esophageal adenocarcinoma; GERD, gastroesophageal reflux disease; HGD, high-grade dysplasia; LC-MS/MS,

liquid chromatography-tandem mass spectrometry.
a These are results from the up-regulated proteins in Figure 2 represented by red signals in group 6.
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biomarker levels have been measured, and our objective is
to use the matching rule from among this set of mutually
exclusive and exhaustive rules to provide an estimate of
the probability that the patient has EAC.

Evaluation of Alternative Rule Models

The highest accuracy that we obtained when a BRL pre-
dictive model was learned using the discovery data set and
then applied to the validation data set was 76%, with a
BACC of 74% and an AUROC of 86%. The highest ac-
curacy that we obtained when a BRL predictive model
was learned using the validation data set and then applied
to the discovery data set was 75%, with a BACC of 73%
and an AUROC of 84%.

These 2 reciprocal results indicate that BRL is accu-
rate for modeling the uncertainty in the validity of the
rule models because of the similar results obtained in the 2
independent data sets for EAC classification. The cross-
validation results for the merged discovery and validation
data sets analyzed by BRL yielded an overall accuracy of
87%, a BACC of 86%, and an AUROC of 93% (Fig. 5).

DISCUSSION
Serum biomarkers hold significant promise for the early,
noninvasive detection of EAC. However, direct identifica-
tion of novel biomarkers from serum presents a challeng-
ing analytical problem because of the very high dynamic
range of protein concentrations present in the complex se-
rum proteome.22 Therefore, in the current study, we used
an LC-MS/MS–based tissue proteomics discovery
approach to guide the selection of candidate serum bio-
markers that were significantly and differentially abun-
dant in the tissue samples along the disease progression
pathway from BE to EAC and that had clinical and func-
tional relevance.

TABLE 2. Rules for the Final Model Using Combina-
tions of Individual Biomarkers at Specific Cutoff
Concentrations Produced by Bayesian Rule
Learninga

1. IF (BGN�245 mg/mL) & (MPO�120 ng/mL) &

(ANXA6�6 mg/mL) THEN (class5normal)

Posterior probability5.939

P5.0

TP530

FP51

2. IF (BGN�245 mg/mL) & (MPO�120 ng/mL) &

(ANXA6>6 mg/mL) THEN (class5normal)

Posterior probability5.75

P5.064

TP511

FP53

3. IF (BGN�245 mg/mL) & (MPO>120 ng/mL) &

(ANXA6�6 mg/mL) THEN (class5normal)

Posterior probability5.75

P5.317

TP52

FP50

4. IF (BGN�245 mg/mL) & (MPO>120 ng/mL) &

(ANXA6>6 mg/mL) THEN (class5cancer)

Posterior probability5.667

P5.434

TP51

FP50

5. IF (BGN>245 mg/mL) & (S100A9�3 ng/mL) &

(ANXA6�6 mg/mL) THEN (class5normal)

Posterior probability5.571

P5.624

TP53

FP52

6. IF (BGN>245 mg/mL) & (S100A9�3 ng/mL) &

(ANXA6>6 mg/mL) THEN (class5normal)

Posterior probability5.8

P5.177

TP53

FP50

7. IF (BGN>245 mg/mL) & (S100A9>3 ng/mL) &

(MPO�120 ng/mL) & (ANXA6�6 mg/mL) THEN (class5normal)

Posterior Probability5.5

P5.777

TP53

FP53

8. IF (BGN>245 mg/mL) & (S100A9>3 ng/mL) & (MPO�120 ng/mL) &

(ANXA6>6 mg/mL) THEN (class5cancer)

Posterior probability5.765

P5.002

TP-12

FP53

9. IF (BGN>245 mg/mL) & (S100A9>3 ng/mL) &

(MPO>120 ng/mL) THEN (class5cancer)

Posterior probability5.917

P5.0

TP521

FP51

Abbreviations: ANXA6, annexin-A6; BGN, biglycan; FP, false-positive; MPO,

myeloperoxidase; S100A9, protein S100-A9; TP, true-positive.
a The 4 serum protein biomarkers used were S100A9, ANXA6, BGN, and

MPO.

Figure 5. This receiver operating characteristic curve (ROC)
was generated from 10-fold cross-fold validation on the
merged data sets to estimate the classification performance
of the final Bayesian rule-learning (BRL) predictive model.
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These results demonstrate that the observed differ-
ences in abundance of the selected proteins along the BE-
HGD-EAC disease spectrum in FFPE-derived tissue sam-
ples were mirrored by the corresponding protein bio-
marker concentrations in the corresponding serum
samples, as summarized in Table 1. The tissue-based
results were used to guide targeted, serum-based bio-
marker discovery; and, with the ease of serum sample col-
lection and relatively low cost, our B-AMP panel and rule
model were able to identify patients with EAC with an
overall accuracy of 87%. It is noteworthy that, although
we originally identified 5 elevated biomarkers, including
resistin, the final BRL model excluded it, because resistin
does not appear to add any predictive value to the best
scoring models based on the other 4 biomarkers.

Over the years, several biologic,
immunohistochemistry-based, and transcriptomic tissue-
based analyses have been used to identify biomarkers of
neoplastic progression in patients with BE. Thus, as
expected, there are many reports citing aberrant biologic
processes that occur in the development of EAC, such as
cell cycle abnormalities and numerous genetic and epige-
netic alterations, including loss of heterozygosity, poly-
ploidy, and aneuploidy. Although proteins such as tumor
protein TP53 (p53),23,24 b-catenin (CTNNB1),25

p16,24,26 and cyclin D1 (CCND1)27 have been studied as
potential tissue-based immunohistochemical biomarkers
of progression,28 none have resulted in widespread clinical
adoption or have demonstrated adequate clinical utility,
probably because of the genetic heterogeneity of EAC
between patients. On the basis of these results, it is appa-
rent that a multiple protein panel approach combined
with mathematical modeling may offset some of the poor
sensitivity associated with a single biomarker “up” or
“down” approach.

With respect to the biomarkers identified in our
panel, the prognostic significance of BGN (an extracellu-
lar matrix component with a known role in epithelial-to-
mesenchymal transdifferentiation central to BE carcino-
genesis), ANXA6 (which belongs to the annexin family of
calcium and phospholipid binding proteins and is a
motility-promoting factor), MPO (an oxidant-generating
enzyme linked to cancer progression), and S100A9 (which
promotes tumor growth in inflammation-associated can-
cer development) has been noted in several tumor types,
including esophageal squamous cell carcinoma.29-33

EAC is a genetically and phenotypically heterogene-
ous malignancy, as described above, and we certainly
would be cautious in claiming that these 4 biomarkers will
capture all EACs, although the classification performance

of the panel in our 2 clinically independent patient groups
suggests that it captures the majority of these cancers, rep-
resenting the downstream protein expression patterns of
the common upstream genetic changes that alter these key
pathways. However, published studies focused on serum
protein biomarkers of EAC are limited to an early report
of elevated levels of the squamous cell carcinoma antigen
(SCC), carcinoembryonic antigen, and cytokeratin 19-
fragment (CYFRA 21-1) in patients with advanced esoph-
ageal cancer34 and more recent evaluations of the circulat-
ing lymphocyte antigen 6 complex locus K (LY6K) and
elevated serum levels of serum gastrin in patients with a
diagnosis of HGD or EAC.35,36

Similar to our study, tissue-based and serum-based
protein discovery and proteomic studies have been
reported. A 2007 comparative mass spectrometry proteo-
mics analysis identified candidate tissue proteins in surgi-
cal specimens that, by hierarchical clustering analysis,
accurately discriminated BE and EAC and identified 38
differentially abundant proteins, among which Rho gua-
nosine diphosphate (GDP) dissociation inhibitor 2, a-
enolase, lamin A/C, elongation factor Tu, thioredoxin
domain-containing protein 17, and nucleoside-
diphosphate kinase A had up-regulated expression levels
of both messenger RNA and protein EAC compared with
BE.37 Several of the those proteins or their isoforms, along
with previously reported progression-related proteins,
also were differentially abundant in our tissue discovery
data set, including CTNNB1, Rho GDP dissociation in-
hibitor 2, elongation factor Tu, and thioredoxin domain-
containing protein 17. In a very recent methods publica-
tion, as noted in our study, tissue-based studies also have
been extended to demonstrate the feasibility of using
LCM and LC-MS/MS analysis of esophageal tissue bi-
opsy specimens for robust proteomic analysis.38

The main weakness of our current study is the small
numbers of samples available for EAC case-control dis-
crimination. However, we were able to demonstrate the
ability of rule-learning methods to successfully predict
class values accurately using 2 independent data sets with
similar distributions of cases and controls. We present a
predictive model learned from the merged data set that
needs to be validated in a larger prospective patient
cohort.

Thus, the next logical steps would be to evaluate the
classification performance our B-AMP serum biomarker
panel in other, larger, recently reported case-control
patient groups and to test it prospectively to detect and/or
monitor progression of EAC. This evaluation follow-up
study would necessarily include the measurement of the
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levels of these serum biomarkers in samples from patients
with other solid organ epithelial malignancies as well as
clinically relevant nonmalignant conditions to evaluate
EAC specificity.

The application of serum-based proteomic bio-
marker panels and risk-prediction models like ours could
be extended to other studies to help determine the pres-
ence or absence of BE, HGD, or EAC. Potential advan-
tages would include: 1) improved use of clinical resources
using blood-based detection as a means of directing effec-
tive screening and post-therapy surveillance; 2) detecting
progression from BE to HGD or EAC in patients under-
going surveillance; 3) preventing deaths from EAC using
an assay in high-risk patients to identify BE, HGD, and
EAC; 4) tracking therapeutic responses, thereby enabling
tailored therapy based on individual disease biology; and
5) detecting subclinical EAC recurrence before the devel-
opment of recurrence as detected by clinical imaging.
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