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Abstract  

Accurate disease classification and biomarker discovery remain challenging tasks in biomedicine.  In this paper, we 
develop and test a practical approach to combining evidence from multiple models when making predictions using 
selective Bayesian model averaging of probabilistic rules. This method is implemented within a Bayesian Rule 
Learning system and compared to model selection when applied to twelve biomedical datasets using the area under 
the ROC curve measure of performance. Cross-validation results indicate that selective Bayesian model averaging 
statistically significantly outperforms model selection on average in these experiments, suggesting that combining 
predictions from multiple models may lead to more accurate quantification of classifier uncertainty.  This approach 
would directly impact the generation of robust predictions on unseen test data, while also increasing knowledge for 
biomarker discovery and mechanisms that underlie disease. 

Introduction 

Models that predict phenotypes and disease states from high-dimensional ‘-omic’ datasets can lead to discovery of 
useful and predictive biomarkers. The typical approach for learning predictive models is to perform model selection 
wherein a single model is selected that summarizes the data well. However, when using real datasets there may be 
substantial uncertainty in choosing one model over all others, especially when the selected model is one of several 
models that all summarize the data more or less equally well. A sound approach in this situation is Bayesian model 
averaging (BMA) wherein the prediction for a test instance is obtained from a weighted average of the predictions 
of all possible models within a model space, with more probable models influencing the prediction more than less 
probable ones (Hoeting et al., 1999). Often in real datasets, the number of possible models is enormous, and 
averaging the predictions over all of them is infeasible. A practical approach is to average over a few good models, 
termed selective BMA, which serves to approximate the predictions that would be obtained from averaging over all 
models. The method that we describe in this paper performs selective BMA over a set of probabilistic rules as an 
approximation to complete BMA over all such rules. 
 
In this paper, we extend a novel rule generation method called Bayesian Rule Learning (BRL), which identifies a 
single set of probabilistic classification rules learned from a training data set that can be applied to predict the class 
value on unseen test data. We perform selective BMA over the rule sets of BRL in order to account for model 
uncertainty. We compare this selective BMA approach to a model selection approach and report experimental 
results obtained from a range of biomedical datasets.  
 
Background 

In this section, we provide details of constrained Bayesian networks, the Bayesian scoring of models, the 
implementation of model selection in BRL, and the selective model averaging version of BRL (SMA-BRL). 
 
Bayesian networks: A Bayesian network (BN) is a probabilistic graphical model that combines a graphical 
representation of the probabilistic dependencies between variables and the probabilistic parameters of the BN. The 
graphical structure is a directed acyclic graph (DAG), where the nodes represent the predictive variables and edges 
represent a (conditional) probabilistic dependency between corresponding variables. Absence of an edge indicates 
(conditional) probabilistic independence between the corresponding variables. The probabilistic parameters 
represent joint probability distributions over a set of predictive variables. BRL uses a Bayesian score (described 
below) to evaluate constrained BN structures (see Figure 1a). A complete decision tree (see Figure 1b) represents 
the parameters of the target node.  
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This tree contains internal nodes that represent 
predictive variables and terminal nodes (leaves) that 
store the probability distribution over the target 
variable. Each leaf has a unique path to the root 
node. Each path represents a unique configuration of 
the parental states. Together, the leaves represent 
every possible parental state. BRL infers a set of 
rules (Figure 1c) from the decision tree. The rule set 
is the classifier model that describes the learned 
graphical structure and the probabilistic parameters. 
These rules are used to predict the target value for 
an unseen instance. 
 
Bayesian score: BRL (Gopalakrishnan et al., 2010) 
learns a constrained BN structure (where a subset of 
the predictor variables have edges to the target) and 
evaluates it using a Bayesian score, which is 
proportional to the likelihood of the BN structure 
given the data. In this paper, we use the BDeu score 
(Heckerman, et al., 1995) to evaluate the BN 
structures. Equation 1 gives the BDeu score for the 
target node in the BN structure. Here, the symbol Γ 
represents the gamma function; j iterates through 
each of the q joint parental states of the target node 
in the BN rule-structure S; k iterates through each of 
the r states of the target node. Njk is the number of 
instances (samples) in the dataset D in which the 
target has state k and parents of the target have state 
j. Here, !! =    !!"!

!!! . The term α0 is a user-
defined parameter, which is called the prior 
equivalent sample size (pess). In this paper we set α0 
= 1.  
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Methods 

Algorithms: We re-implemented the beam search in 
the BRL, as shown in Figure 2. The beam is a 
priority queue of size W, which holds a set of BN 
structures ordered by the Bayesian score. The new 
implementation removes certain constraints imposed 
by the previous implementation, such that, we now 
search a larger space of models and we ensure that 

the final beam (of size W) returns each of the best W structures (according to the Bayesian score) evaluated by the 
search procedure. 
 
Model selection in BRL returns a single model, S, from a total of W models that are generated from the training data, 
D, by the use of beam search. For a given vector of predictor variable values X, model S generates the posterior 
distribution of the target values P(T | X, S). This does not account for the uncertainty of model S which is described 
by its posterior probability P(S | D). In model selection, the selected model is assumed to have a posterior 
probability of 1. In reality, we are not certain that the model with the highest Bayesian score is indeed the data-
generating model. Ideally, we should account for this uncertainty. In Bayesian model averaging, the predicted 
posterior distribution of the target is weighted by the uncertainty of the model, for all models in the model space. 
These terms are then summed to obtain the model averaged posterior distribution of the target. The cardinality of the 

 
Figure 1: An example of a BN structure learned from BRL. 
Panel (a) displays a constrained BN structure (S) with two 
predictive variables, ‘Gene1’ and ‘Gene2’, as parents of the 
target variable T. The two predictive variables are binary 
with values of ‘UP’ and ‘DOWN’. The target variable is 
binary having values ‘Case’ and ‘Control’. Panel (b) shows 
the parameters for the target node as a complete decision 
tree. The interior nodes of the tree are the predictive 
variables (represented by ellipses) and the leaf nodes 
(represented by rectangles) show the probability distribution 
over T. Panel (c) shows the rule set inferred from the 
decision tree by BRL. Each rule antecedent is a path from a 
leaf to the root node. The consequent is the probability 
distribution of T. The following parentheses show the 
number of ‘Case’ instances and the number of ‘Control’ 
instances that match the antecedent, respectively. 
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model space in BRL is 
!
!

!
!!! , where n is the number of predictor variables and B is the maximum number of 

parents the target node can have. The total number of models grows rapidly in n. It is generally not feasible to 
enumerate every possible model. Instead, we make use of the W models already available from the existing beam 
search in the BRL. For model averaging, we average over these W models. This is called selective Bayesian model 
averaging. Equation 2 gives the average of the posterior distributions of the target node T, averaged over W models. 
 
! ! ! =    ! ! !, !! ∙ !(!!|!)!

!!! 	   	   	   	   	   	   (2)  
 
The posterior probability of each model in Equation 2 is derived using Equation 3. 
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INPUT: A training dataset D with m instances, a set of n discrete predictor variables X = {X1, X2… Xn}, and a discrete target variable T. The 
maximum number of parents that the target node T can have is max_parents. The maximum number of rule structures that the beam holds is W. 
 
OUTPUT: Returns the posterior distribution of the target node given an input vector of n discrete variables. 
 
DEFINITIONS: 
T is the target node; 
Score(S) = P(D | S). This is the Bayesian score for rule structure S generated from dataset D (see Equation 1); 
Q = Priority queue defined by the set {S1, S2… SW} where Score(Si) > Score(Sj), when i < j; 
F = Priority queue of models; 
V = Set of all variables in dataset D, except target variable T; 
π(S) denotes the parents in rule structure S; 
max_parents = 8 (default); 
W = 1000 (default); 
 
ALGORITHM: 
BRL_BeamSearch: 
1.  Create structure S containing just target node T and place S onto Q 
2. WHILE (Q is not empty) DO: 
3.  Scurr ← remove(Q) 
4.  IF(F does not contain Scurr): 

place Scurr onto F 
  END-IF 
4.   V' = V - π(Scurr) //Vi is a set of all variables not in Scurr. 
5.   IF ( (V' ≠ ϕ) AND (|π(Scurr)| < max_parents ) THEN: 
6.    FOR-EACH (v in V') DO: 
    Snew ← Add v as a parent of T in Scurr. 
    IF(Q does not contain Snew):  
     place Snew onto Q 
    END-IF 
    IF(F does not contain Snew): 
     place Snew onto F  

END-IF 
   END-FOR-EACH //Ends all specialization 
8.   Trim Q to the first W elements 
   Trim F to the first W elements 
  END-IF 
 END-WHILE //End of beam search 
9. Return F 
 
(a) BRL_ModelSelection: 
1. F = BRL_BeamSearch: 
2. Sbest ← remove(F) 
3. Sbest is used to predict T. 
 
(b) BRL_SelectiveModelAveraging: 
1. F = BRL_BeamSearch: 
2. The W models in F are used to predict T (see Equation 2). 
 
Figure 2: Algorithm for model selection and model averaging in BRL. 
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Biomedical datasets: We analyzed the performance of SMA-BRL and BRL on 12 publicly available biomedical 
datasets that are listed in Table 1. It has been shown that irrelevant variables tend to introduce noise during the 

model search process when there are 
high-dimensional biomedical data 
with a large number of predictor 
variables, but relatively few samples 
(Liu, et al. 2012). As an initial step, 
we therefore applied the 
Partitioning-based Adaptive 
Irrelevant Feature Eliminator 
(PAIFE) to remove irrelevant 
features. PAIFE deems a variable as 
‘unconditionally relevant’ by using a 
univariate analysis that adaptively 
employs the chi-square test or the 
Fisher’s exact test. PAIFE also 
detects ‘conditionally relevant’ 
variables from subsets of variables, 
where the relationship of the 
variable to the target variable is 
conditional over other variables. The 
variables that are neither 
conditionally nor unconditionally 
relevant were considered irrelevant 
and were removed from the dataset.  
 
Experimental methods: We wanted 
to evaluate and compare the 

predictive performance of BRL and SMA-BRL, to quantify the change in predictive performance due to model 
averaging. We evaluated the two algorithms, over the 12 publicly available datasets, using 10 runs of 10-fold 
stratified cross-validation. For a given run, the mean performance (see below) over the 10 folds was derived. We 
used the average of those means as an estimate of the predictive performance of the algorithm for a given dataset.  
 
Discretization: BRL and consequently SMA-BRL require discrete values for all the variables in the input dataset. 
The datasets that we analyzed (see Table 1) have continuous valued predictor variables, and a discrete target 
variable. In the 10 runs of 10-fold cross-validation, each fold was discretized using the efficient Bayesian 
discretization (EBD) method (Lustgarten, et al., 2011). EBD takes a parameter λ , which determines the expected 
number of cut-points for each variable. For our analysis, we set λ = 0.5. 
 
Performance measure: The performance of the algorithms was evaluated using the percentage of the area under the 
ROC curve (AUC). The area under the ROC curve is typically used as a summary statistic of discrimination. The 
AUC is equivalent to the probability that a randomly chosen case from the negative class will have a smaller 
predicted probability of belonging to the positive class than a randomly chosen case from the positive class.  
 
The average AUCs obtained from the two algorithms for each of the 12 datasets, over 10 runs of 10-fold stratified 
cross-validation, is analyzed using two statistical tests. We used the tests to check whether the difference between 
the performances of the two classifiers over the 12 datasets is non-random. The tests included (1) significance 
testing with the Wilcoxon paired-samples two-sided signed ranks test, and (2) effect size testing with paired-samples 
two-tailed t-test. We used the Statistics Toolbox from MATLAB to perform these tests (MATLAB and Statistics 
Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States). 
 
Results and discussion 

The average AUCs obtained from the two algorithms for each of the 12 datasets is shown in Table 2. The result 
from the significance tests show that SMA-BRL is statistically significantly better than BRL based on these AUC 
values. 

Table 1. The 12 biomedical datasets used for analysis. The first eleven are 
genomic and the twelfth one is proteomic. The data are identified with the 
‘Dataset ID’. The column ‘P/D’ describes the type of data as Prognostic (P) 
or Diagnostic (D). The ‘# V’ column is the number of predictor variables 
originally in the dataset. The ‘#VPAIFE’ column shows the number of 
variables selected by PAIFE. The ‘Sample Class Distribution’ shows the 
number of samples in each class in the dataset. The ‘Reference’ points to 
the relevant literature for the dataset. 

Dataset P/D #V #VPAIFE Sample class 
distribution Reference 

1 D 6584 1972 40:21:00 (Alon, et al., 1999) 
2 D 12582 2371 28:24:20 (Armstrong, et al., 2002) 
3 P 5372 858 69:17:00 (Beer, et al., 2002) 
4 D 7129 2288 47:25:00 (Golub, et al., 1999) 
5 D 7464 1880 18:18 (Hedenfalk, et al., 2001) 
6 P 7129 699 40:20:00 (Iizuka, et al., 2003) 
7 D 2308 832 29:25:17:12 (Khan, et al., 2001) 
8 D 7129 1927 58:19:00 (Shipp, et al., 2002) 
9 D 10510 6713 52:50:00 (Singh, et al., 2002) 

10 P 24481 4251 44:34:00 (Veer, et al., 2002) 
11 D 7039 1230 35:04:00 (Welsch, et al., 2001) 
12 D 70 15 139:66 (Bigbee, et al., 2012) 
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The non-parametric Wilcoxon paired-samples signed 
ranks test, with significance level α = 0.05, shows that 
SMA-BRL performs statistically significantly better than 
BRL with a p-value of 9.765x10-4. The paired-samples 
two-tailed t-test, with significance level α = 0.05, also 
shows that SMA-BRL performs statistically significantly 
better than BRL with a p-value of 0.0122. The 95% 
confidence interval of the mean of the difference between 
the column values of BRL and SMA-BRL in Table 2, 
based upon the t-distribution is [-2.438, -0.372].  
 
We observe that the difference between the average AUC, 
for BRL and SMA-BRL, across the 12 datasets is small. 
We also observe that for each of the 12 datasets we 
analyzed in this paper, SMA-BRL either obtains an 
equivalent or better average AUC performance than BRL. 
Note that the SMA-BRL uses the same search engine as 
the BRL. The BRL generates W models but only one is 
selected and used for inference on a test case. SMA-BRL 
makes use of all the W models for its inference. 
Therefore, SMA-BRL only requires an additional 
constant time operation during the model inference step. 

As a result, SMA-BRL returns a robust classifier, which is worth exploring, at very little additional computational 
cost. A limitation of SMA-BRL when compared to BRL is that the predictions based on SMA-BRL involve the 
weighted inference of W probabilistic rules, which is more complex to understand than the inference of a single rule 
in BRL. 

 
Case Study: We examined the models learned by BRL and 
SMA-BRL on one of the training folds of dataset 12 (see 
Table 1). The ROC curve of the models is shown in Figure 3. 
The AUC of the BRL model is 77.47 and of the SMA-BRL 
model is 82.42. The BRL model included three biomarkers 
(MIF, Thrombos, and SAA) and the SMA-BRL model, in 
addition to the three biomarkers, included five more 
biomarkers (IL-8, IGFBP-1, PROLACTI, TTR, and 
RANTES). In future work, we plan to study the relative 
importance of these variables and their biological 
significance. 
 
Conclusion 

SMA-BRL accounts for model uncertainty, which the model 
selection method BRL ignores. SMA-BRL generates robust 
predictions from a committee of plausible models. The 

strong theory underlying Bayesian model averaging is supported by the results from our analysis of 12 datasets. 
Moreover, since SMA-BRL only averaged over the models encountered in the BRL search, the computational time 
complexity of the two algorithms is almost identical. Thus, the improved results achieved with SMA-BRL are 
obtained essentially for free. Overall, these results support using model averaging when predicting outcomes in 
biomedical datasets that are similar to the 12 datasets analyzed in this paper.  
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Table 2. Average AUCs obtained from BRL and 
SMA-BRL using 10 runs of 10-fold cross-validation 
for the 12 datasets described in Table 1. For each 
dataset, the result of the better performing algorithm is 
shown in bold. The last row shows the average from 
the 12 datasets and the standard error of mean (SEM). 

Dataset BRL SMA-BRL 
1 99.50 99.50 
2 95.12 95.67 
3 60.14 60.25 
4 91.88 93.82 
5 94.13 100.00 
6 57.19 58.13 
7 84.67 86.55 
8 81.58 82.87 
9 90.87 90.95 

10 86.12 86.50 
11 95.42 97.92 
12 80.96 82.28 

Average ± SEM 84.80 ± 3.90 86.20 ± 4.05 
 

 
Figure 3: The ROC curve for BRL and SMA-
BRL, on one training fold of dataset 12 (Table 1). 
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