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Despite years of preclinical development, biological interventions designed to treat complex
diseases such as asthma often fail in phase III clinical trials. These failures suggest that current
methods to analyze biomedical data might be missing critical aspects of biological complexity
such as the assumption that cases and controls come from homogeneous distributions. Here
we discuss why and how methods from the rapidly evolving field of visual analytics can help
translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the
challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles
of patients with complex diseases. Because a primary goal of visual analytics is to amplify
the cognitive capacities of humans for detecting patterns in complex data, we begin with an
overview of the cognitive foundations for the field of visual analytics. Next, we organize the
primary ways in which a specific form of visual analytics called networks has been used to
model and infer biological mechanisms, which help to identify the properties of networks that
are particularly useful for the discovery and analysis of proteomic heterogeneity in complex
diseases. We describe one such approach called subject-protein networks, and demonstrate its
application on two proteomic datasets. This demonstration provides insights to help transla-
tional teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of
subject-protein networks for analyzing molecular heterogeneities, with the translational goal
of designing biomarker-based clinical trials, and accelerating the development of personalized
approaches to medicine.

Keywords:
Bioinformatics / Molecular and clinical profiles / Network analysis / Personalized
medicine / Proteomic heterogeneity / Subject-Protein Networks

Additional supporting information may be found in the online version of this article at
the publisher’s web-site

1 Introduction

Received: September 22, 2014
Revised: January 15, 2015
Accepted: February 9, 2015

Correspondence: Dr. Suresh K. Bhavnani, Institute for Transla-
tional Sciences, University of Texas Medical Branch, 301 Univer-
sity Blvd, Galveston, TX 77555, USA

E-mail: skbhavnani@gmail.com

Abbreviation: MSF, Mediterranean spotted fever

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Although vast resources have been spent in developing
new therapies for complex diseases such as asthma, many
drugs designed to target specific proteins have failed in
clinical trials for reasons ranging from drug ineffectiveness
to toxic side effects [1,2]. For example, although several in
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vitro studies strongly suggested that blocking IL-5 (critical
in Th2 inflammation and allergic response) would be
effective in asthma treatment [3, 4], clinical trials using
mepolizumab (a monoclonal antibody to IL-5) failed to
show a statistically significant improvement in key clinical
parameters [5]. Subsequent studies found that only a sub-
group of asthma patients might benefit from mepolizumab
treatment [6, 7], suggesting that there existed consider-
able heterogeneity in molecular etiologies among asthma
patients.

Such realizations have led to a growing consensus that
current methods used for identifying proteomic targets in
complex diseases (defined as having multifactorial etiologies)
are not designed to reveal proteomic heterogeneities (defined as
differences in the proteomic profiles of patients), resulting
in missed opportunities for the design of therapies that are
targeted to specific patient subgroups. For example, most
methods used to analyze molecular data assume that cases
and controls can each be characterized by a single mean and
variance, and identify variables that are univariately (e.g. chi-
square) or multivariately (e.g. regression) significant across
the two distributions. This focus on identifying variables that
explain the difference between cases and controls potentially
conceals patient subgroups, whose identification could lead
to more targeted therapeutics, a necessary component of per-
sonalized medicine [8].

One approach to help multidisciplinary translational
teams [9] (typically consisting of biologists such as proteomic
researchers, clinicians, and bioinformaticians) integrate and
comprehend such complex proteomic data is through meth-
ods from the evolving field of visual analytics [10]. Because
a primary goal of visual analytics is to help humans amplify
their cognitive capabilities for detecting complex patterns in
data, we begin by presenting an overview of the theoretical
foundations for visual analytics, and the motivations to use
methods from this field to analyze proteomic data. Next, we
organize the major ways in which a specific form of visual
analytics called networks have been used to model and infer
biological mechanisms such as genetic regulatory pathways.
This organization helps to identify the properties of networks
that are especially effective for the analysis of molecular
heterogeneities and their respective mechanisms. We
demonstrate the use of an approach that uses these network
properties to help identify proteomic heterogeneity and their
respective pathways in two proteomic datasets. These demon-
strations reveal the strengths and limitations of the method
leading to insights for the development of future advanced
approaches that can accelerate the discovery of molecular
heterogeneities through the integrated analysis of multi-omics
data.

2 Visual analytics: Theoretical
foundations

Visual analytics is defined as “the science of analytical rea-
soning facilitated by interactive visual interfaces” [10]. Visual
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analytical methods are designed to augment cognitive reason-
ing by transforming symbolic and numeric data (e.g. num-
bers in a spreadsheet) into visualizations (e.g. a scatter plot),
which can be manipulated through interaction (e.g. highlight
outliers in the scatter plot). As described below, visualizations
and interactions with those visualizations can be powerful for
making important discoveries in proteomic data because of
the nature of cognition and the tasks that translational teams
typically perform.

2.1 The role of visualizations in analytical reasoning

Data visualization can be powerful for analyzing biomedical
data because it leverages the parallel architecture of the hu-
man visual system consisting of the eye and the visual cortex.
This parallel cognitive architecture enables the rapid compre-
hension of multiple complex relationships simultaneously
such as similarities, anomalies, and trends, which can lead
to insights about relationships in the data [10, 11]. For exam-
ple, Fig. 1A shows a spreadsheet that contains normalized
cytokine expression levels in patients before and after taking
a drug. Determining which of the two conditions have more
patients with cytokine level > 0.8 is tedious and error prone
because the analyst needs to compare the entry in each cell
with > 0.8, remember the result of each comparison, and
then count the number of patients with cytokine levels >
0.8 in each column to make the final comparison. Because
such symbolic processing is done serially, the cognitive load
increases with an increasing number of entries, and there-
fore a large number of data points can easily overwhelm the
cognitive capacities of an analyst.

As shown in Fig. 1B, when cells with values > 0.8 are
highlighted in red, the resulting visual representation allows
the analyst to determine more rapidly that the left column
has more red cells compared to the right column. This occurs
because the representation leverages the power of the hu-
man visual system to process in parallel the red cells in each
column. Moreover, the visualization in Fig. 1B shifts infor-
mation from an internal to an external representation, which
speeds up the task of counting the number of individuals
with high cytokine levels in each column [12].

Nevertheless, not all data visualizations are helpful in en-
hancing cognition. For example, a road map that is oriented to
the south is not helpful for a driver who is facing north since
he/she will have to rotate the map mentally before identifying
the route. Similarly, an organizational chart that shows em-
ployee names and locations laid out in a hierarchy based on
rank is not helpful if the task is to identify patterns based on
the geographic location of the employees. Furthermore, if a
chart has a missing legend, it is difficult to map domain con-
cepts onto the visualization. Visualizations therefore need to
be aligned with tasks [13], mental representations of the user
[14], and the data before they can be helpful in enhancing
cognition.
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Before Drug |After Drug
F 0.98 0.93
F 0.21 0.71
M 0.97 0.11
M 0.84 0.02
F 0.76 0.42
M 0.87 0.14
F 0.97 0.83
M 0.92 0.46
M 0.93 0.22
F 0.75 0.67
F 0.93 0.98
F 0.23 0.7
F 0.8 0.84
M 0.86 0.07
M 0.94 0.72
M 0.87 0.7
A

Before Drug |After Drug

0.75 0.67
0.21 0.71
0.23 0.7

0.76 0.42

Cc

Figure 1. An example of how symbolic data in a spreadsheet (A) when converted into a visual representation (B) leverages the parallel
processing abilities of the visual cortex, which enables faster comprehension of patterns in the data. Because visual processing is parallel
in nature, it scales to handle large amounts of data. When the same data are sorted by gender (C), the visual representation reveals yet
another pattern demonstrating how interaction with the data is a critical aspect of visual analytics, and can guide the verification of the

patterns using the appropriate quantitative measures.
2.2 The role of interactivity in analytical reasoning

Although data visualizations can be useful if they are aligned
with tasks, mental representations, and data, they are often
inadequate for analyzing complex data. This is because anal-
ysis typically entails multiple subtasks such as discovery, in-
spection, confirmation, and explanation [15], each of which
requires a different representation of the data. For example,
if the task in Fig. 1 is to analyze the relationship of gender to
condition, then it is useful to sort the data based on gender.
As shown in Fig. 1C, interaction with the data through such
sorting reveals that the drug has no effect on females (low
values remain low, and high values remain high), but con-
sistently lowers cytokine expression in males (all high values
become low). Thus, interaction with data visualizations can
reveal relationships that are often not apparent in a single
static visualization of the data.

Furthermore, interactivity is particularly critical when an
interdisciplinary team is involved in the analysis because each
member of the team typically needs a different representation
of the same data. For example, a molecular biologist might be
interested in which genes are co-expressed across individuals
of a specific phenotype, while a clinician might be interested
in the response to a therapy in patients with similar gene
expression profiles. To be able to handle several tasks and
mental representations, interactivity is critical to transform
parts, or the entire visual representation to generate new rep-
resentations.

2.3 Theories related to visual analytics

Visual analytics draws on existing theories and taxonomies
from cognitive psychology, computer science, and graphic
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design. However, integrative theories and principles under-
lying visual analytics are still in early stages of development
[10]. For example, researchers have developed several classi-
fications of visual representations [16,17], and articulated the
goals of interaction at different levels of granularity [18, 19].

One such classification [16] of visual representations cate-
gorizes them into (i) time series (e.g. line plots showing how
the expression of cytokines changes over time), (ii) statistical
distributions (e.g. box-and-whisker plots of cytokine expres-
sion across patients), (iii) maps (e.g. heatmaps of proteomic
expression across patients), (iv) hierarchies (e.g. dendrograms
resulting from hierarchical clustering showing how cytokines
cluster based on differences in expression across patients),
and (v) networks (e.g. protein—protein interaction networks).
Each of these visual representations are constructed of ba-
sic elements referred to as marks (e.g. points, lines, and ar-
eas), which can have graphical attributes referred to as chan-
nels (e.g. position, size, value, texture, color, orientation, and
shape) [20,21]. A mark and associated channels are together
referred to as a visual encoding of symbolic information such
as protein expression.

Once a visual representation of the data is generated, in-
teractivity allows it to be transformed in part or in whole into
a new visualization. For example, a top-down tree may be
transformed into a circular tree, and nodes in a tree may be
colored based on specific properties such as gender. Several
attempts have been made to categorize such interactions with
visualizations at different levels of granularity. For example,
low-level interaction intents have been classified [19] as: fil-
ter, retrieve value, compute derived value, sort, determine
range, find extremum, characterize distribution, find anoma-
lies, cluster, and correlate. In contrast, higher level interaction
intents have been classified as: select, explore, reconfigure,
encode, abstract/elaborate, filter, and connect [18].

www.proteomics-journal.com
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While classifications help to organize different types of
visualizations and interactions, several principles and heuris-
tics have been proposed to explain visual phenomena and
guide the design of effective visualizations and interaction
methods. These include the principle of closure (tendency of
an incomplete shape like a circle drawn with a missing seg-
ments to appear like a closed form) from the Gestalt Laws of
Grouping [22], and the pop-out effect (tendency of objects with
bright colors, movement, and large size to stand out com-
pared to other objects in the visual field, and conditions when
this phenomenon fails leading to effects such as visual clut-
ter) from the Biased Competition Theory [23]. Furthermore,
several design heuristics have been proposed for creating ef-
fective visualizations such as (i) to increase the “data-ink”
ratio [24] when designing quantitative displays of informa-
tion (stripping unnecessary decoration and other “chartjunk”
that interferes with comprehension), (ii) how to select visual
channels for different data types (e.g. position in a Euclidean
plane is the most effective channel to represent nominal,
ordinal, and continuous data) [25], and (iii) the strategy of
overview first, zoom and filter, then details-on-demand to help
interaction designers create interfaces that help humans ex-
plore and comprehend large and complex visual displays of
information [17]. Many of these principles interact in complex
ways, and therefore require skill for their application (often
requiring trial and error) in order to generate an effective
visualization that is useful for specific tasks and users.

In addition to the above classifications of visual representa-
tions and interactions, there have been early attempts at devel-
oping theoretical frameworks that explain how key elements
of visual analytics enable analytical reasoning. For example,
Liu and Stasko [26] proposed a framework that integrates the
three major components of visual analytics: visual representa-
tion, interaction, and analytical reasoning. In this framework,
internal and external representations are coupled to enable
three related goals: (i) External anchoring or the process of
associating conceptual structures (e.g. cytokine expression >
0.8) to elements of the visualization (red colored cells), (ii)
Information foraging or the process of exploring the external
visual representation through extraction (e.g. counting red
cells related to cytokine expression) or through transforma-
tion (e.g. sorting according to gender) of the representation,
and (iii) Cognitive offloading or the process of transferring a
conceptual structure onto the visual representation to reduce
cognitive load (e.g. encircling or annotating in Fig. 1C all fe-
male patients who have cytokine expression > 0.8 before and
after taking the drug). Though such frameworks are still in
early stages of development, they provide a first step in de-
veloping a theoretical understanding of how visual analytics
enables analytical reasoning,

Finally, it is pertinent to note that the field of visual an-
alytics has considerable overlap with the fields of scientific
visualization (concerned with the visualization of real-world
three-dimensional phenomena such as earthquakes) and in-
formation visualization (focused on visual representations of
abstract data such as relationships). However, while visual an-
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alytics obviously shares data visualizations with both fields,
it differs from them because it is also focused on developing
interactive methods that facilitate analytical reasoning and
making sense of complex information by analysts individu-
ally, or in groups [10].

In summary, although many heuristics, principles, and
frameworks from cognitive psychology, computer science,
and graphic design have been proposed to inform visual an-
alytics, integrated theories for this field have yet to emerge.
However, despite the lack of such theories, one form of visual
analytics, namely networks, has been widely used to model
and infer biological mechanisms. The next section organizes
these attempts, with the goal of identifying the properties of
networks that make them particularly suitable for modeling
and inferring proteomic heterogeneity.

3 Application of visual analytics to model
and infer biological mechanisms

In recent years, there has been a growing realization that
most biological phenomena emerge from complex relation-
ships among numerous components of a cell such as DNA,
RNA, proteins, and metabolites. This realization has moti-
vated a shift in the analysis of biological phenomena from a
reductionist approach of analyzing individual molecules and
their immediate neighbors, to a holistic approach of model-
ing and inferring relationships among all molecules related
to a biological system [27,28]. Understanding biological pro-
cesses using this holistic approach by integrating the indi-
vidual molecular associations has become a central goal of
systems biology [29].

Because the systems biology approach embraces complex
relationships among numerous molecular components, net-
work analysis has gained primacy as a fundamental approach
for modeling and inferring biological phenomena [30, 31].
This is because networks enable (i) the visual representation
of associations between pairs of molecules, in addition to
how all the pair-wise associations in the network result in a
biological system, (ii) the quantitative analysis and validation
of local and global patterns because the representation is a
graph and therefore has mathematical properties, and (iii)
interaction with the visualization, which helps translational
teams to explore different aspects of the data with the goal of
comprehending the overall biological system.

A network consists of a set of nodes that are connected in
pairs by edges [32]. Nodes can represent one or more types of
entities (e.g. subjects or cytokines), and edges between nodes
represent a relationship between the entities (e.g. a case has
a particular cytokine expression value). Unipartite networks
have nodes that are of one type of entity (e.g. proteins), and
the edges represent associations between them (e.g. protein—
protein interaction). In contrast, Fig. 2 shows an example of a
bipartite network where nodes represent two types of entities,
and edges exist only between different types of entities [32]

www.proteomics-journal.com
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Figure 2. An example of a bipartite network where edges exist only between two different types of nodes. Here nodes represent either
subjects (cases = pink, controls = blue), or cytokines (black), and the undirected weighted edges connecting the two represent gene

expression.

(e.g. between subjects and cytokines representing cytokine
expression).

Nodes and edges (marks represented as points and lines in
a network) can have several graphical attributes (channels) to
represent different aspects of the data. Nodes can represent
different aspects of the data through shape and color (e.g.
white and red circles can represent cases and controls respec-
tively), and edges connecting nodes can either be undirected
(as shown in Fig. 2), or directed such as an arrow represent-
ing directionality (e.g. a transcription factor regulates a gene
in a biological pathway). Furthermore, edges can be weighted
to represent continuous values (e.g. thickness of the edge is
proportional to the normalized amount of cytokine expres-
sion as shown in Fig. 2), or unweighted to represent a binary
relationship (e.g. a drug is related to a target). Additionally,
edges can be colored or have style to represent a type of rela-
tionship (e.g. red and blue dashed lines representing up- and
downregulation), or be arced, tapered, or bundled to improve
comprehension [33, 34]. Networks can also be dynamic rep-
resenting temporal changes (e.g. spread of a virus through a
social network [35], and laid out in three dimensions to ana-
lyze complex data that are described in more detail elsewhere
[36]). Furthermore, there is a wide range of network analyt-
ical measures (e.g. modularity and degree centrality), whose
description is beyond the scope of this paper, but have been
extensively covered in recent reviews and books [32].

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The above graphical properties of nodes and edges de-
signed to represent different aspects of the data have been
combined to generate different network types to help model
or infer a wide range of biological mechanisms. As shown
in Table 1, these networks can be organized based on four
major types of biological relationships.

3.1 Process networks

This class of networks is designed to directly model biological
mechanisms typically using a bipartite or multipartite (where
nodes can represent many types of entities) network. For ex-
ample, in a gene regulatory network, the nodes represent genes
or transcription factors, and a directed edge either shows
which gene generates which transcription factor, or which
transcription factor regulates which gene. This approach has
been used to help biologists comprehend a biological system
as a whole, and to identify regulation phenomena such as
NfkB signaling [37] or cytokine signaling [38]. As shown in
Table 1, signal transduction networks [39] and metabolic net-
works [40] also model biological processes, but the nodes and
edges have different semantic meaning compared to gene reg-
ulatory networks. Process networks have been modeled using
tools such as Cytoscape [41], which can layout the nodes from
left to right to reflect the directionality of the overall sequence

www.proteomics-journal.com
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of regulation (see [42], and reviews of network analysis tools
[43]).

3.2 Interaction networks

This class of networks is designed to model molecules that
interact with each other. Because such interactions have no
directionality, they are typically modeled using a unipartite
network with undirected edges. For example, in a protein—
protein interaction network, the nodes represent proteins and
the undirected and unweighted edges represent the binary
relationship that two proteins can interact with each other.
Protein—protein interaction networks [44] have been used to
identify network properties of individual proteins (e.g. hub
proteins that have many edges because they can interact with
many other proteins and are evolutionarily important), in
addition to global network properties (e.g. densely connected
clusters representing protein complexes related to a specific
function). As shown in Table 1, interaction networks have
also been used to model how genes interact (via proteins)
with each other [45]. Typical tools for such analyses include
Cytoscape and STRING [44].

3.3 Similarity networks

This class of networks is designed to model how entities
such as molecules or subjects are similar to each other using
a statistical measure to represent similarity, and a weighted
unipartite network to represent the pair-wise similarity. For
example, in a gene co-expression network, the nodes represent
genes, and the weighted edges represent some statistical mea-
sure of similarity between gene pairs, such as Pearson’s cor-
relation of two genes co-occurring across subjects (see [46] for
an analysis of key similarity measures). Gene co-expression
networks are therefore not designed to directly model biolog-
ical mechanisms, but rather are used to infer mechanisms
based on how genes cluster. For example, a gene—-gene co-
expression network was used to infer the function of five
genes with cellular processes of cell proliferation and cell
cycle that were previously uncharacterized [47]. As shown
in Table 1, other examples of similarity networks include
patient—patient similarity networks that aim to reveal how pa-
tients are similar or dissimilar based on molecular or clinical
variables [48], in addition to metabolite—metabolite correla-
tion networks [49]. Typical tools to construct such networks
include Cytoscape and Pajek [50].

3.4 Affiliation networks

This class of networks is designed to model how one kind of
entity is affiliated to another kind of entity. This is typically
done by explicitly representing both entities using a bipartite
network with weighted or unweighted edges. For example,

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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in a drug-target network, the nodes represent drugs or targets,
and unweighted edges represent which drug is affiliated with
which target. Drug-target networks [51] have been used to in-
fer new purposes for known drugs. For example, researchers
have (i) modeled addictive drugs and their targets as a
bipartite network, (ii) included in the network nonaddictive
drugs that shared at least one target with the addictive drugs,
and (iii) analyzed how the nonaddictive drugs clustered
with the addictive drugs suggesting a new purpose for the
nonaddictive drugs. Other types of networks in this class
include disease-gene networks [52], and species-microbiome
networks [53]. Finally, subject-protein networks contain
nodes that represent subjects or proteins, and weighted
edges represent protein expression. Such networks have
been useful in identifying proteomic heterogeneity within
subjects (based on how the subjects are clustered), and their
respective pathways (based on which proteins are enriched in
subject clusters) [54]. Typical tools to construct such bipartite
networks include Pajek.

The above classification of networks that have been used to
model and infer biological phenomena suggests that subject-
protein networks are most useful in analyzing proteomic het-
erogeneity because they explicitly model both subjects and
proteins in the same representation. This duality can there-
fore reveal not only how subject clusters are similar or dif-
ferent based on their proteomic profile, but also how those
subject clusters are related to protein clusters, and therefore
the possible mechanisms activated or absent in those subject
clusters.

Subject-protein networks therefore differ from similarity
networks that are unipartite, and created by aggregating one
side of the bipartite relationship in the data such as patient
clusters, based on an aggregated similarity score of proteins,
or vice versa. While similarity networks can reveal either sub-
ject clusters, or protein clusters, they cannot reveal how sub-
jects are related to protein clusters. This relationship is fun-
damental for inferring the mechanisms that are unique or
shared among the subject clusters and are therefore critical
for comprehending proteomic heterogeneity.

Furthermore, as described in the next section, because
of their dual-node representation, subject-protein networks
also enable an integrated visualization and analysis of not
only the above discussed proteomic profiles, but also how
those profiles are associated with subject variables (e.g. clin-
ical, demographic, and environmental), and with the protein
variables (e.g. function and pathways to which they belong).
Additionally, an important use of subject-protein networks
is modeling experimental data, in comparison to modeling
existing knowledge culled from databases of molecules and
their function and interactions.

Despite the power of the above subject-protein bipartite
representation, to the best of our knowledge there appear to be
few attempts to use them for analyzing proteomic heterogene-
ity. The next section therefore aims to address this missed
opportunity by describing the methodology for modeling
and analyzing subject-protein networks, and the subsequent
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section demonstrates how that method has been used to
reveal different forms of heterogeneity in two proteomic
datasets.

4 Method for subject-protein network
analysis: Discovering proteomic
heterogeneity

Because subject-protein networks have key properties that
help translational teams to infer proteomic heterogeneity and
the respective mechanisms, we have found it useful to use its
bipartite representation throughout the modeling and analyt-
ical phases. This approach is different from the commonly
used approach of starting with a bipartite network represen-
tation but then converting it into a unipartite network [52] of
only subjects or only molecules. As discussed earlier, this ap-
proach cannot reveal how biomarkers and subjects co-cluster.
Below we describe a three-stage approach of analyzing pro-
teomic data using subject-protein networks throughout the
analytical process.

4.1 Exploratory visual analysis

The first stage is to transform the symbolic relationships (pro-
tein expression) between subjects and proteins in the data
into a visual representation for analysis of heterogeneities.
As illustrated in Fig. 3.1A, to maintain a strong intuition
about the relationships across the variables, we normalized
each variable to range from 0 to 1 using the min-max range
normalizing method [54, 55]. This enabled a straightforward
interpretation of the edges in the network such as being able
to compare the maximum value in one variable, to the maxi-
mum in another variable (see Supporting Information A for
more details and rationale for the min—-max range normal-
ization method). Next, we identified outliers in each variable
using Grubb’s test [56], and discussed with the domain expert
(typically a biologist with extensive experience in the domain
of the data) whether the identified outliers were biologically
feasible (and therefore important to preserve in the data), or
an error in measurement (in which case it was removed, and
the min-max normalization repeated).

Next, as shown in Fig. 3.1B, the normalized data were
transformed into a network representation. Similar to Fig.
2, nodes represented subjects or molecules, and edges rep-
resented normalized molecular measurements. Additionally,
the size of the nodes was made proportional to the sum of
the edges that connected to them, which provided a visual cue
about the variance of the molecular expressions. For example,
large nodes represented either subjects who had high overall
cytokine expressions, or cytokines that were highly expressed
across the subjects.

Because Euclidean internode distance is an effective chan-
nel to represent similarity [25], as shown in Fig. 3.1C, we
used a force-directed algorithm called Kamada Kawai [57] in
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the network analysis tool called Pajek [50] to lay out the nodes.
This algorithm results in pushing together nodes with similar
edge weight profiles, and pushing apart those with dissimilar
profiles. Layouts generated through force-directed algorithms
are approximate and designed to reveal overall topologies,
rather than to show exact distances between nodes.

The overall network topology (Fig. 3.1D) was then in-
spected by a domain expert to identify the nature of the het-
erogeneities in the data. Examples of topologies with hetero-
geneities include (i) distinct clustering where subject clusters
are associated with one or more molecule clusters, and (ii)
a core-periphery topology where there exists a network core
consisting of subjects with high expression of some or all
variables, and a network periphery consisting of subjects with
low expression of the same variables.

4.2 AQuantitative verification and validation

As shown in Fig. 3.2A, the topology identified in the network
was used to guide the selection of appropriate quantitative
methods for verification and validation. For example, if there
were distinct clusters in the network, we used modularity
[32] to identify the number and boundaries of the clusters.
However, if there were more complex topologies in the net-
work such as a core-periphery, then we used hierarchical
clustering [55], which we have found to be more success-
ful in distinguishing the core from the periphery [58, 59].
The topologies were then compared to 1000 random permu-
tations of the data to test whether the patterns could have
occurred by chance [54]. Once the subgroups of patients and
molecules were identified and validated, the cluster bound-
aries were superimposed onto the bipartite network either by
making the nodes in a cluster the same color, or by drawing
outlines around the node clusters to denote the boundaries
(Fig. 3.2B).

Because the subject clusters were determined based on
their molecular profiles, we integrated the clinical variables by
analyzing which of them was significantly different across the
clusters. This can be done using univariate statistical methods
such as Kruskal-Wallis [55], or a multivariate analysis using
regression to determine, for example, which combination of
clinical variables best distinguishes one patient cluster from
the others. To further explore the association of clinical and
molecular variables, significant categorical (e.g. gender) and
continuous variables (e.g. systolic blood pressure) were su-
perimposed onto the original network using color and node
size, respectively (Fig. 3.2C and D).

4.3 Inference of heterogeneity and biological
mechanisms
The ultimate goal of our analytical method was to generate

data-driven hypotheses about the molecular and clinical
heterogeneities. Toward that goal, we used databases such as

www.proteomics-journal.com



Proteomics 2015, 15, 1405-1418
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Figure 3. The three analytical stages of subject-protein network analysis for identifying proteomic heterogeneities in complex diseases.
These stages are often iterative such as when the inference stage triggers new hypotheses about subject-molecular relationships, which

in turn require quantitative verification and validation.

Ingenuity Pathway Analysis [60] and STRING [44] to identify
pathways that included some or all of the molecules that
co-occurred in the identified clusters. This analysis helped
the translational team to recognize pathways that were either
already known to be activated in the disease being analyzed,
or those known to be activated in another disease, and
therefore novel for the current disease. If no known pathway
was found, then the biologist proposed a new pathway that
was activated for the patient subgroup identified (Fig. 3.3A).

The translational team then integrated the inferred path-
ways that were significantly associated with specific patient
subgroups, with the significant clinical variables across the
subgroups to define a hypothesis for the heterogeneities
(Fig. 3.3B). The resulting heterogeneities and pathways pin-
pointed hypotheses that could be tested through future labo-
ratory experiments, or in other datasets of the same disease.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

5 Applications of the subject-protein
network analysis method

We have used the above general methodology on several
biomedical datasets [54,58,59], of which two are briefly de-
scribed here because (i) the respective bipartite networks had
distinctly different topologies demonstrating the power of the
methodology to identify important associations in the data,
and (ii) the hypotheses of heterogeneity and molecular path-
ways generated from these topologies were considered by the
domain experts to be novel contributions worthy of publica-
tion. While both of these analyses have been published before
[54, 58], we briefly present the results here to highlight and
compare the kinds of topologies and inferences that can be
made using subject-protein networks, with the goal of identi-
fying their strengths for analyzing proteomic heterogeneity.
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Patient
Cluster-1

@ Cytokine-Cluster-1
O Cytokine-Cluster-2
© Cytokine-Cluster-3
® Asthma Patient

= Normalized Cytokine Expression

5.1 Asthma

The asthma network consisted of 83 asthma patients, 18 can-
didate cytokines, and 9 lung function variables (see Fig. 3
for the intermediate steps of the analysis, and Supporting In-
formation Material A for details of the data and steps of the
method). The analysis (Fig. 4) revealed three distinct patient
clusters that had a complex but comprehensible association
with three distinct cytokine clusters: Patient-Cluster-1 and
Patient-Cluster-3 were associated with two different cytokine
clusters, but Patient-Cluster-2 had high expression of two cy-
tokine clusters, resulting in a complex but comprehensible
intercluster relationship among patients and cytokines.

Analysis of the clinical variables revealed that the three pa-
tient clusters were significantly different based on six lung
function variables (e.g. FEV;, a measure of the lung capac-
ity). A biologist and pulmonologist integrated the molecular
based clustering with the clinical variables and inferred three
separate subgroups of patients with activation of different bi-
ological mechanisms [54]. For example, Patient-Cluster-3 had
high co-expression of Eotaxin and IL-4, significantly lower co-
expression of the other cytokines, and significantly lower lung
function. The domain experts therefore inferred that these
patients with significantly lower lung function have a Th2
lymphocyte skewed immune response resulting in the secre-
tion of IL-4, which induces eotaxin production by bronchial
epithelial cells. This in turn results in downstream actions
including the activation and recruitment of tissue-resident
eosinophils, a marker of early stage asthma, suggesting a dif-
ferent approach to their treatment compared to patients in
other clusters.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Patient
Cluster-2

Patient Figure 4. Results of the subject-protein

S
e Cluster-3 network analyses showing a complex but

understandable clustering of patients and
their associations with cytokine clusters.
The cytokine-based clusters were inte-
grated with clinical variables to help infer
the proteomic heterogeneities and their bi-
ological mechanisms.

5.2 Rickettsial infections

The rickettsia network consisted of 49 Mediterranean spotted
fever (MSF) patients, 36 Dermacentor spp. borne necrosis-
erythema lymphadenopathy (DEBONEL) patients, and 26
candidate cytokines (see Supporting Information Material B
for details of the data and steps of the method). The DEBONEL
infection is considered milder compared to the MSF infec-
tion, and the goal was to analyze how the candidate cytokines
were expressed across both phenotypes.

The analysis (Fig. 5) revealed a core-periphery network
topology where there were 12 MSF patients with high overall
cytokine expression of five cytokines in the network core, and
the remaining patients of both phenotypes with low overall
cytokine expression were distributed in the network periph-
ery [58]. Furthermore, 7 of the 12 patients in the core had
evidence of thrombocytopenia, and the five cytokines in the
core were implicated in pro-inflammatory pathways. A pul-
monologist from the translation team integrated the molec-
ular based clustering with the clinical variables and inferred
that the patients in the core had an amplification of inflam-
matory responses, resulting in diffused endothelial injury
and vascular leakage, and therefore at highest risk of severe
disease [58].

6 Discussion
The above two applications of subject-protein network anal-

ysis revealed two substantially different types of heterogene-
ity in proteomic data. The asthma network revealed patients
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Figure 5. Results of the subject-protein network analyses showing a core-periphery topology of patients with rickettsial infections, and
cytokines clusters. The cytokine-based clusters were integrated with clinical variables to help infer the patient heterogeneities and their

biological mechanisms.

characterized by three distinct multivariate combinations of
cytokine expression. These profiles resulted in three patient
clusters with a complex but comprehensible relationship with
three cytokine clusters. Furthermore, by integrating this net-
work topology with the clinical variables, the translation team
inferred three distinct proteomic heterogeneities, each with
their respective mechanisms [54]. In contrast, the rickettsia
network had one patient group that had high expression of 5
cytokines and low expression of the remaining 21 cytokines,
and another patient group that had low expression of major-
ity of the 26 cytokines. In other words, both patient groups
had similarly low expression for most cytokines, but one pa-
tient group had substantially higher co-expression of just 5
cytokines. These two profiles resulted in the core-periphery
topology reflecting the high overlap between the two groups.
This result enabled the translational team to integrate four
types of information: (i) associations revealed by the bipartite
network topology as described above, (ii) relationship of the
topology to the clinical variables of the patients, (iii) prior do-
main knowledge that only a small percentage of patients with
rickettsial infections have severe reactions, and (iv) the mech-

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

anisms implied by the five strongly expressed cytokines. This
led the team to infer that only the patients in the core had
an amplification of inflammatory responses (as evidenced by
the five highly expressed cytokines also in the core in a phe-
nomenon referred to as a cytokine storm [58]) resulting in a
severe form of the disease. This phenomenon was largely
absent in the periphery patients.

In summary, the bipartite network layout in both projects
revealed a topology consisting of all subjects, proteins, and
their relationships together in the same external representa-
tion. This externalization of key elements and relationships in
the data into a unified visualization was designed to leverage
the parallel processing power of the visual cortex to detect
and comprehend complex patterns among the represented
elements and relationships. Practically, it enabled the trans-
lational team to derive a holistic understanding of how the
subjects were similar or different based on their proteomic
profiles, leading to a cogent understanding of the heterogene-
ity and mechanisms involved.

As we have argued elsewhere [15], such complex differ-
ences in molecular profiles across subjects are difficult to
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discover and comprehend from the heatmap representation
commonly used to analyze bipartite molecular relationships.
This is because heatmaps have only one degree of freedom
on each of the vertical and horizontal axes, allowing a row
or column (e.g. representing subjects and variables, respec-
tively) to be adjacent to a maximum of two other columns
or rows. This severely restricts the kinds of intercluster rela-
tionships that can be easily discovered. In contrast, networks
have two degrees of freedom where nodes can move in the
x-axis and y-axis enabling the discovery of complex interclus-
ter relationships that are comprehensible as demonstrated by
the asthma and rickettsia networks.

7 Conclusions and future research

In response to a growing realization that current methods to
analyze proteomic data might be missing critical aspects of
biological complexity such as molecular and phenotypic het-
erogeneity, we explored why and how methods from visual
analytics could help translational teams overcome this hur-
dle. A review of the theoretical foundations of visual analytics
suggests that although there exist many heuristics, princi-
ples, and frameworks from cognitive psychology, computer
science, and graphic design that inform visual analytics, inte-
grated theories for this field have yet to emerge. Furthermore,
a review of how network visualization and analysis have been
used to model and infer biological phenomena helped to iden-
tify the properties of networks exemplified by subject-protein
networks that are particularly useful for the analysis of pro-
teomic heterogeneity. Given the growing realization that both
target and patient selection play a critical role in the success
of clinical trials [61], we believe that subject-protein networks
could be used to identify subgroups of patients (e.g. those
with and without activation of the IL-5 signaling pathway)
as inclusionary criteria in clinical trials that target a specific
biological pathway.

Reflecting on our experience in using subject-protein
networks to identify heterogeneities in complex diseases
[54, 58, 59], we have come to appreciate two factors that are
critical for the successful application of this method. First,
we believe that the bipartite representation itself should be
used consistently to layer different types of information dur-
ing the exploratory, verification, and inferential stages. This
representational consistency enables translational teams to
comprehend the complex associations between the molecular
and clinical information. While this fact can be derived from
cognitive theories related to external representations [10, 12],
most projects either transform bipartite networks into unipar-
tite networks often for the convenience of analysis, or use the
bipartite representation as a way to present results of analyses
conducted without the use of the representation. Second, the
use of bipartite networks (and for that matter the use of many
other visual representations) is dependent on the involvement
of a domain expert who is willing to complement the dom-
inant paradigm of hypothesis testing (which tends to focus
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on microphenomena such as single molecules or pathways)
with a willingness to explore the macrophenomena about a
disease, of which heterogeneity is a prime example.

However, bipartite networks currently have several theo-
retical and practical limitations. Theoretically, while subject
nodes can simultaneously represent a few variables such as
gender, blood pressure, and phenotype using color, size, and
shape, respectively, there is an upper limit on the number of
variables that can be simultaneously visualized. We have ex-
plored alternate representations such as Circos [62-64], which
overcomes this limitation, but which have important trade-
offs such as being unable to show patient or protein clusters
through positioning in the Euclidean plane, an important
channel provided by network layouts. Therefore, there is a
need for integrative frameworks that could, for example, help
to determine which combination of visual representations
is best suited for different tasks such as discovering hetero-
geneities. Furthermore, force-directed layout algorithms of-
ten fail to show any patterns in the data resulting in what is
colloquially called a “hairball.” In such cases, the nodes ap-
pear to be randomly laid out, and which are often arbitrarily
removed in the search for network structure. Therefore, we
need more systematic, defensible, and transparent methods
to discover hidden structures in network hairballs.

Another limitation of the method in its current form is that
it has been used to model only one type of molecular data,
namely protein levels in the same network. However, there
are increasing opportunities and need to conduct multi-omics
analysis such as the integrated analysis of protein levels, gene
expression, and metabolite concentrations across a cohort of
subjects. Our current research is therefore exploring two nat-
ural extensions for analyzing such multi-omics data: (i) the
bipartite network could represent subject clusters based on
the primary molecular type such as proteins, and a regres-
sion analysis could be used to determine which combination
of the other omics variables is significantly expressed across
the subject clusters; (ii) the bipartite network could represent
subjects and all the molecular types using a normalization
method that enables each molecular type to have the same
interpretive range (e.g. 0 = lowest value, 0.5 = middle value, 1
= highest value, for a specific molecule across the subjects) to
enable comparison across the different omics types. If such
approaches are successful, the concept of subject-protein net-
works could be generalized to subject-molecule or even subject-
variable networks to model a wide range of variables ranging
from genes to comorbidities across subjects.

Practically, visual analytical tools tend to be designed
for analysts, often requiring substantial programming and
knowledge to generate appropriate visualizations, and there-
fore limiting the use of the methods by biologists and clini-
cians. This limitation motivates the need for tools that enable
biologists and clinicians to explore data on their own so that
they can better leverage their domain knowledge in inter-
preting the patterns in the data. Furthermore, as visual ana-
Iytics progressively becomes a necessary part of data-driven
hypotheses generation, there is a need to include the skills
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of generating and interpreting integrated visual analytics in
biomedical informatics curricula. Such theoretical, practical,
and pedagogical advances have the potential for accelerat-
ing the identification of molecular and phenotypic hetero-
geneities in complex diseases, which is an important step
toward the design of biomarker-based clinical trials, and for
achieving the goals of personalized medicine.
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