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ABSTRACT 

 
We investigated two patient-specific and four popu-
lation-wide machine learning methods for predicting 
dire outcomes in community acquired pneumonia 
(CAP) patients. Predicting dire outcomes in CAP 
patients can significantly influence the decision about 
whether to admit the patient to the hospital or to treat 
the patient at home. Population-wide methods induce 
models that are trained to perform well on average on 
all future cases. In contrast, patient-specific methods 
specifically induce a model for a particular patient 
case. We trained the models on a set of 1601 patient 
cases and evaluated them on a separate set of 686 
cases. One patient-specific method performed better 
than the population-wide methods when evaluated 
within a clinically relevant range of the ROC curve. 
Our study provides support for patient-specific meth-
ods being a promising approach for making clinical 
predictions. 

 
INTRODUCTION 

 
The practice of medicine typically entails predicting 
outcomes under uncertainty, such as predicting dire 
outcomes that include mortality and serious compli-
cations in patients diagnosed with community ac-
quired pneumonia (CAP). Making better outcome 
predictions has the potential for improving decisions 
taken by healthcare providers, leading to better pa-
tient care and more efficient utilization of healthcare 
resources. The management of CAP is an important 
healthcare problem since it causes significant patient 
mortality, morbidity, and healthcare resource utiliza-
tion. In 1994 in the U.S., there were 4.1 million pa-
tients diagnosed with CAP of which 1.2 million were 
hospitalized. In the same year, the total cost of treat-
ing CAP was estimated to be about 10 billion dollars. 

Accurately predicting the probability of a dire 
outcome in a patient presenting with CAP is an im-
portant factor in deciding whether to admit the pa-
tient to the hospital or not. Patients who are very 
unlikely to have a dire outcome might be safely 
treated at home with oral antibiotics, while higher 
risk patients would preferably be treated in the hospi-
tal with intravenous antibiotics.  

Numerous probabilistic models, based on statistical 
and machine learning techniques, for making clinical 
predictions have been described in the literature. 
Commonly used methods include logistic regression, 
neural networks, k-Nearest neighbor techniques, de-
cision trees, and Bayesian networks [1]. Almost al-
ways, a single model is induced from a training set of 
patient cases, with the intent of applying it to future 
patient cases. We call such a model a population-
wide model because it is intended to be applied to an 
entire population of future cases. A population-wide 
model is optimized such that it predicts well on aver-
age when applied to future patients. In contrast, a 
patient-specific model is specifically constructed for 
a particular patient. Such a model is optimized to 
predict especially well for the single patient case for 
which it is intended. This optimization is achieved by 
specializing the model structure and parameters, as 
well as the model search, based on the known fea-
tures of the patient case at hand. 

The discriminative performance of a predictive 
model is typically evaluated with a Receiver Operat-
ing Characteristic (ROC) curve and the area under 
the ROC curve (AUC). However, in clinical domains, 
the entire range of the ROC curve may not useful for 
decision making. Rather, only a narrow region of the 
ROC curve is useful. Predictive models that perform 
better in this restricted clinically relevant region are 
likely to be more helpful to a decision-maker.  

In this paper, we investigate the performance of 
six machine learning methods, including two patient-
specific methods, for the clinical problem of predict-
ing dire outcomes in patients diagnosed with CAP. 
We show that patient-specific methods perform better 
than population-wide methods when evaluated in a 
clinically relevant region of the ROC curve. 
 

THE PORT DATASET 
 
The pneumonia database that we used contains sev-
eral hundred clinical variables on 2287 patients diag-
nosed with CAP. The data was collected by the 
Pneumonia Patient Outcomes Research Team 
(PORT) using a prospective cohort study of hospital-
ized and ambulatory care patients. The study was 
conducted from October 1991 to March 1994 at five 
hospitals in three geographical locations: Pittsburgh, 
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Boston, and Halifax, Nova Scotia. Eligibility criteria 
were that a patient must (1) be at least 18 years of 
age, (2) have one or more symptoms suggestive of 
pneumonia, and (3) have radiographic evidence of 
pneumonia within 24 hours of presentation [2].  

During the study enrollment period, 4002 indi-
viduals satisfied the entry criteria for study eligibility, 
of whom 2287 (57.1%) were enrolled. Based on chart 
review, hundreds of data items were collected for 
each of the 2287 patients. Enrolled patients were fol-
lowed prospectively to assess their vital status and a 
variety of outcomes at 30 days after the radiographic 
diagnosis of pneumonia.  

One key goal of the PORT project was to de-
velop accurate criteria for prognosis of patients with 
CAP that could provide guidance on which patients 
should be hospitalized and which patients might be 
safely treated at home. 
 

METHODS 
 
Selection of Variables 
 
From the available variables in the PORT dataset, we 
selected 158 clinical variables that are typically avail-
able in the Emergency Department at the time the 
decision whether to admit or not is made. The vari-
ables include demographic information, history and 
physical examination information, laboratory results, 
and chest X-ray findings. Of the 158 variables, 120 
are discrete and the remaining 38 are continuous. A 
majority of the discrete variables are binary and the 
rest have between three to seven values.  The 38 con-
tinuous variables are derived mainly from laboratory 
tests and were discretized based on thresholds pro-
vided by clinical experts on the PORT project. These 
158 discrete variables constituted the input for the 
machine learning methods. 

The binary outcome variable that we selected is 
called dire outcome. A patient was considered to 
have experienced a dire outcome if any of the follow-
ing occurred: (1) death within 30 days of presenta-
tion, (2) an initial intensive care unit admission for 
respiratory failure, respiratory or cardiac arrest, or 
shock, or (3) the presence of one or more specific, 
severe complications. Based on these criteria, 261 
patients (11.4%) had a dire outcome.  

Mortality is commonly used as the outcome 
variable for developing statistical and machine learn-
ing predictive models. For example, the pneumonia 
severity index (PSI) is a model based on logistic re-
gression that predicts patient mortality within 30 days 
of presentation with CAP. We chose to predict dire 
outcomes that include mortality as well as severe 
complications, because it seems likely that the deci-
sion about where to treat CAP patients (hospital ver-

sus home) is influenced not just by mortality, but also 
by other possible severe outcomes. A recent paper 
showed that even small improvements in predicting 
dire outcomes in CAP patients is projected to lead to 
significant savings in healthcare costs and improved 
delivery of healthcare [3]. 
 
Training and Test Datasets 
 
The dataset consisting of 2287 patient cases was di-
vided into a training set of 1601 cases (70%) and a 
test set of 686 cases (30%). This is the same split as 
described in [3]. The training set was created by ran-
domly sampling from the 2287 cases in the dataset 
such that both the training and the test datasets had 
approximately the same proportion of cases with dire 
outcomes. The training and the test sets contained 
182 (11.4%) and 79 (11.5%) cases of dire outcomes 
respectively. Missing data were filled-in using an 
iterated k-nearest neighbor method. This is a non-
parametric EM-style algorithm using Gibbs sampling 
that is described in detail in [3].  
 
Machine Learning Methods 
 
We evaluated six machine learning classification 
methods that produce probabilistic outputs: Simple 
Bayes (SB), logistic regression (LR), artificial neural 
networks (ANN), k-Nearest Neighbor (kNN), the 
Lazy Bayesian Rule (LBR) learner, and the Patient-
Specific model-Averaging (PSA) algorithm. The first 
four methods are among the commonest methods 
described in the medical literature for constructing 
predictive models and the last two are patient-specific 
methods. The LBR algorithm was introduced in the 
machine learning literature by Zheng and Webb [4]. 
We developed and applied a modified version of 
LBR. Both the original LBR and our modification of 
it are described below. The PSA algorithm is a pa-
tient-specific Bayesian model averaging method that 
we have developed and is described in detail in [5], 
where it is called the Instance-Specific model-
Averaging algorithm. For SB, LR, NN, and kNN, we 
used the implementations in Weka (v3.3.6) for our 
experiments [6]. We implemented the modified LBR 
in Matlab (version 7) and the PSA in Java. Models 
were induced from the training set and were evalu-
ated on the test set. Below, we describe SB, LR, NN, 
and kNN very briefly (see [7] for details) and LBR 
and PSA in some detail.  
 
1. Simple Bayes. Simple Bayes (also known as Na-
ïve Bayes) is a common machine learning method 
that often has excellent discriminative performance. 
The Simple Bayes classifier makes the simplifying 
assumption that features are conditionally independ-
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ent given the outcome. For each feature it estimates 
the conditional probabilities given the outcome from 
the training set. Given a test case, the classifier 
chooses the outcome with the maximum posterior 
probability. 
  
2. Logistic Regression. Logistic regression (LR) is 
commonly used for predictive modeling in the medi-
cal literature. Logistic regression derives the log odds 
of a binary outcome variable in terms of a linear 
combination of the feature variables. The coefficients 
of the feature variables are estimated from the train-
ing set, typically by using an iterative maximum like-
lihood method. 
 
3. Artificial Neural Networks. Artificial Neural 
Networks (ANN) generalize logistic regression and 
are commonly used for learning non-linear relation-
ships. The standard technique for learning ANN uses 
backpropagation that iteratively revises the parame-
ters of the model based on the errors made by the 
model on a subset of the training data.  
 
4. k-Nearest Neighbor. Given a test case to be pre-
dicted, the k-Nearest Neighbor method selects the k 
most similar training cases according to some simi-
larity measure and averages their outcomes.  
 
5. Lazy Bayesian Rule. The Lazy Bayesian Rule 
(LBR) learner is a classification algorithm that in-
duces a rule from training cases in the neighborhood 
of the test case that is then used to classify it. A rule 
generated by LBR consists of (1) a conjunction of a 
subset of all the feature-value pairs present in the test 
case as the antecedent, and (2) a local simple Bayes 
classifier as the consequent. The structure of the local 

simple Bayes classifier consists of the outcome vari-
able as the parent of all those features that do not 
appear in the antecedent, and the parameters of the 
classifier are estimated from the subset of training 
cases that satisfy the antecedent. Figure 1 shows an 
example of a LBR rule constructed using six vari-
ables from our dataset including the dire outcome 
variable. The rule has two features in the antecedent 
and a simple Bayes classifier with three features in 
the consequent. A greedy step-forward search selects 
the optimal LBR rule for a test case to be classified. 
In particular, features in the consequent of the current 
rule are temporarily moved one at a time from the 
consequent to the antecedent and evaluated for 
whether it reduces the overall error rate on the train-
ing set. The feature that most reduces the overall er-
ror rate is permanently added to the antecedent and 
removed from the consequent, and the search contin-
ues; if no feature decreases the current error rate, then 
the search halts and the current rule is applied to pre-
dict the outcome for the test case. When previously 
evaluated on 29 datasets from the UCI Machine 
Learning Repository, LBR had the lowest average 
error rate when compared to several machine learning 
methods [4]. 

LBR is an example of a patient-specific method 
that uses the features in the test patient case to direct 
the search for a suitable model in the model space. 
The original LBR method evaluates a candidate rule 
based on the error rate of the local Simple Bayes 
classifier applied to the relevant subset of the training 
dataset, using leave-one-out cross-validation. We 
modified the original LBR (henceforth called modi-
fied LBR) by replacing the error rate with the Brier 
score. For a binary variable like dire outcome that 
represents an event that either occurs or does not oc-
cur, the Brier score B for a set of n test cases is com-
puted as: 
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where pi is the predicted probability of a dire out-
come occurring in the ith test case and ai is the actual 
outcome for that case. The variable ai is set to 1 if a 
dire outcome occurs and is set to 0 if no dire outcome 
occurs in the ith test case. The Brier score ranges from 
0 when all predictions are perfect to 1 when the out-
come of every case is predicted incorrectly with per-
fect confidence. The score is sensitive to both calibra-
tion and discrimination, is easily computed, and the 
Brier scores of two models on the same cases can be 
statistically compared with the Williams-Kloot statis-
tic [8]. We used greedy step-forward search to select 
the optimal LBR rule; a current rule was replaced by 
a candidate rule if the candidate rule had a signifi-
cantly lower Brier score using a one-tailed test at the 

Gender Cough Infiltrate 

Figure 1. An example of a LBR model (or rule). 
The two nodes at the top represent features in the 
antecedent of the LBR rule that have been instan-
tiated to their respective values in the test case. 
The node in the center (the outcome variable be-
ing predicted) and the three nodes at the bottom 
constitute the local simple Bayes classifier present 
in the consequent of the LBR rule.  
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0.001 significance level. For simplicity of implemen-
tation, we did not control for multiple testing. Thus, 
modified LBR may potentially select sub-optimal 
models and controlling for multiple testing might 
further improve its performance. 
6. Patient-Specific Algorithm. The methods de-
scribed so far select a single model from some model 
space, ignoring the uncertainty in model selection. 
Bayesian model averaging is a coherent approach to 
dealing with the uncertainty in model selection. 
However, since the number of models is typically 
enormous, exact model averaging over the entire 
model space is usually not feasible. The PSA algo-
rithm approximates Bayesian model averaging in a 
patient-sensitive manner. The current implementation 
of PSA searches over LBR models, using the features 
of the test case to direct the search. The prediction for 
the outcome of the test case is obtained by combining 
the predictions of the selected models weighted by 
their posterior probabilities. When evaluated on 29 
UCI datasets, PSA had significantly fewer errors on 
seven datasets and significantly more errors on two 
datasets when compared to the original LBR algo-
rithm, providing support that patient-specific model 
averaging can improve on patient-specific model 
selection [5]. 
 

RESULTS AND DISCUSSION 
 

Area under the ROC curve. The AUCs (with 95% 
confidence intervals) for the six methods are shown 
in the second column in Table 1. Modified LBR 
achieves the highest AUC at 0.861 with 95% confi-
dence interval [0.826, 0.896]. This is statistically 
significantly higher (at the 0.05 level) than LR and k-
NN but not significantly different from the AUCs of 
ANN, SB and PSA. 
 
Analysis of the clinically relevant region of the 
ROC curve. Based on the AUC the patient-specific 

methods (i.e., modified LBR and PSA) did not per-
form significantly better than population-wide meth-
ods like SB and ANN. However, the ROC curves of 
different methods may have significantly different 
performance characteristics in a particular region, 
even if they have similar AUCs. In clinical decision-
making, the entire range of the ROC curve is usually 
not of interest. In the case of CAP, one of the PORT 
clinical investigators, who is a CAP expert, assessed 
that an acceptable error rate corresponds to no more 
than 1 to 2 percent of CAP patients treated at home 
experiencing a dire outcome. The error rate can be 
used to determine a point on the ROC curve that is 
clinically relevant in influencing decisions about 
where to treat CAP patients.  

We identified a point on the ROC curve for each 
method that is between 1 to 2 percent error and as 
close as possible to 1%. We describe in detail the 
performance characteristics of such a point for the 
modified LBR method. The identified point on the 
ROC curve closest to 1% is shown in Figure 2. The 
precise error rate at this point is 1.2% corresponding 
to 5 patients who were treated at home and had a dire 
outcome. Operating at this point on the ROC curve, 
modified LBR recommends treating 400 patients at 
home out of the 686 in the test set.  Based on the ac-
tual care given, 280 patients were treated at home of 
which 5 patients (1.8%) had a dire outcome. Thus, 
modified LBR recommends treating 17.5% more 
patients at home than were actually treated at home, 
which is highly statistically significant (P < 0.0001). 
Since, modified LBR’s error rate is not statistically 
significantly different from that of the actual care 
(1.3% versus 1.8%); its recommendations are not 
likely to reduce the quality of healthcare. We next 
estimate the potential cost savings from such a reduc-
tion in admissions. 

The estimated cost for treating a CAP patient in 
the hospital in the U.S. in 1994 was $7517 compared 
to $421 for treating the patient at home [9]. If the 

Method AUC with 
95% confidence 

interval 

Errors and 
percent error with 95% 

confidence interval 

Number and percent (with 
95% confidence interval) of 

patients treated at home 
Logistic regression (LR) 0.741 [0.681, 0.802] 3 (1.8% [0.36%, 5.07%]) 170 (24.8% [21.59%, 28.19%]) 
Neural Network (ANN) 0.828 [0.783, 0.873] 3 (1.7% [0.36%, 5.01%]) 172 (25.1% [21.87%, 28.49%]) 
k-Nearest Neighbor (k-NN) 0.787 [0.738, 0.837] 3 (1.5% [0.31%, 4.30%]) 201 (29.3% [25.92%, 32.86%]) 
Simple Bayes (SB) 0.850 [0.817, 0.883] 5 (1.3% [0.43%, 3.33%]) 368 (53.6% [49.83%, 57.42%]) 
Modified LBR 0.861 [0.826, 0.896] 5 (1.2% [0.41%, 2.89%]) 400 (58.3% [54.52%, 62.03%]) 
PSA 0.853 [0.818, 0.876] 5 (1.3% [0.42%, 2.97%]) 390 (56.8% [53.05%, 60.59%]) 
Actual care - 5 (1.8% [0.58%, 4.12%]) 280 (40.8% [37.11%, 44.60%]) 

Table 1. Performance of the various methods on the test set of 686 cases. The method for computing the errors 
in column 3 is described in detail in the text. The last column gives the number of patients that would be treated 
at home out of 686 when operating at the point on the ROC curve that corresponds to the error rate in the third 
column. The last row gives the actual error rate and the actual number of patients treated at home. 
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recommendations of the modified LBR model were 
followed for all the CAP patients in the U.S. in 1994, 
the 1.2 million CAP hospital admissions in that year 
would be reduced by 17.5%. This would lead to sav-
ings of more than 1.5 billion dollars.  

The number and percent of patients recom-
mended for treatment at home for all the methods are 
given in the last column of Table 1. Modified LBR 
that was discussed in detail in the previous paragraph, 
performs significantly better (at the 0.05 significance 
level) than the other methods except for PSA.  
 

CONCLUSION 
 
We evaluated the performance of six machine learn-
ing methods on the clinical problem of predicting 
dire outcomes in CAP patients. The two patient-
specific methods, modified LBR and PSA, and two 
of the population wide methods, SB and ANN, had 
similar AUCs. We also analyzed the performance of 
the methods in a clinically relevant region of the 
ROC curve that corresponded to an error rate be-
tween 1 to 2 percent. Based on the proportion of pa-
tients treated at home, modified LBR performed sig-
nificantly better than all other methods except for 
PSA.  

Although four methods had similar AUCs, they 
did not all perform similarly in a focused region of 
the ROC curve. This suggests that for clinical prob-
lems like predicting dire outcomes in CAP patients, 
the AUC can be too broad a measure that is unable to 
differentiate among various predictive models. A 
more focused assessment of the clinically relevant 

region of the ROC curve can be more informative. 
We briefly discussed the potential cost savings that 
can accrue from operating at a clinically relevant 
region of the ROC curve. A more detailed analysis is 
described in [3].  
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 There are limitations to our study. The patient-
specific methods, especially modified LBR, per-
formed well in a small region of the ROC curve that 
was deemed significant by an expert. However, dif-
ferent physicians may have dissimilar preferences 
and we did not analyze other possibly relevant re-
gions of the ROC curve. Patient preferences are also 
important in making decisions of hospital admis-
sions; we did not assess them in this study. 
 In the future, we plan to develop and apply meth-
ods that can directly optimize a specified region of 
the ROC curve. Such methods have the potential for 
customizing predictive models to the preferences of 
the healthcare decision maker.  

Figure 2. ROC curve on the test set for the modi-
fied LBR method. The dot indicates the operating 
point on the curve that is discussed in the text.  
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