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It is believed that interactions among genes (epistasis) may play an important role in susceptibility to common diseases
(Moore and Williams [2002]. Ann Med 34:88–95; Ritchie et al. [2001]. Am J Hum Genet 69:138–147). To study the underlying
genetic variants of diseases, genome-wide association studies (GWAS) that simultaneously assay several hundreds of
thousands of SNPs are being increasingly used. Often, the data from these studies are analyzed with single-locus methods
(Lambert et al. [2009]. Nat Genet 41:1094–1099; Reiman et al. [2007]. Neuron 54:713–720). However, epistatic interactions
may not be easily detected with single-locus methods (Marchini et al. [2005]. Nat Genet 37:413–417). As a result, both
parametric and nonparametric multi-locus methods have been developed to detect such interactions (Heidema et al. [2006].
BMC Genet 7:23). However, efficiently analyzing epistasis using high-dimensional genome-wide data remains a crucial
challenge. We develop a method based on Bayesian networks and the minimum description length principle for detecting
epistatic interactions. We compare its ability to detect gene-gene interactions and its efficiency to that of the combinatorial
method multifactor dimensionality reduction (MDR) using 28,000 simulated data sets generated from 70 different genetic
models We further apply the method to over 300,000 SNPs obtained from a GWAS involving late onset Alzheimer’s disease
(LOAD). Our method outperforms MDR and we substantiate previous results indicating that the GAB2 gene is associated
with LOAD. To our knowledge, this is the first successful model-based epistatic analysis using a high-dimensional
genome-wide data set. Genet. Epidemiol. 34:575–581, 2010. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

Common diseases, like hypertension and Alzheimer’s
disease, are believed to be multifactorial in origin being
caused by genetic variants at multiple loci, with each locus
conferring modest risk of developing the disease [Moore
and Williams, 2002]. In addition, interactions among
genetic variants at multiple loci and between genetic
variants and environmental factors likely play a role in
such diseases [Nagel, 2005; Ritchie et al., 2001; Thornton-
Wells et al., 2004]. Multiple and complex interactions
underlie gene expression and its regulation and there is
evidence that gene-gene interactions and gene-environment
interactions play a role in the determination of the
phenotypes in common diseases [Kardia, 2000; Templeton,
2000]. Furthermore, [Smith and Lusis, 2002] argue that the
majority of the socioeconomic burden of disease in
industrialized nations is due to complex disorders, in
which multiple genes interact with the environment to
produce diseases. Examples include atherosclerosis,
diabetes, cancer, multiple sclerosis, autism, alcoholism,
and drug abuse [Diabetes Genetics Initiative et al., 2007;
Easton et al., 2007; Moffatt et al., 2007; Samani et al., 2007;
Scott et al., 2007; Steinthorsdottir et al., 2007; Wellcome
Trust Case Control Consortium, 2007].

The most common type of genetic variation is the single
nucleotide polymorphism (SNP) that results when a
single nucleotide is replaced by another in the genome
sequence. The development of high-throughput genotyp-
ing technologies that simultaneously assay many
thousands of SNPs have led to a flurry of genome-
wide association studies (GWAS) with the aim of
discovering SNPs that either singly or in combination
are associated with disease. Often, the data from such
studies are analyzed with single-locus methods [Coon
et al., 2007; Herbert et al., 2006; Lambert et al., 2009;
Reiman et al., 2007]. Loci that interact in complex ways
may not be easily detected with such methods [Marchini
et al., 2005].

One important example of gene-gene interaction
is epistasis. Biologically, epistasis refers to gene-gene
interaction when the action of one gene is modified
by one or several other genes. Statistically, epistasis
refers to interaction between genetic variants at multiple
loci in which the net effect on disease from the
combination of genotypes at the different loci is not
accurately predicted by a simple linear combination of
the individual genotype effects. The detection of statis-
tical epistasis has the potential to identify interacting
genetic loci that may underlie the inheritance of common
diseases.
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It is difficult to detect epistatic relationships statisti-
cally due to the sparseness of the data and the
nonlinearity of the relationships [Velez et al., 2007].
New statistical and computational methods have recently
been developed to identify and characterize epistatic
interactions. Parametric methods include logistic regres-
sion [Millstein et al., 2005] and nonparametric methods
based on machine-learning include combinatorial meth-
ods, set association analysis, genetic programming,
neural networks, and random forests. These latter
methods have been summarized in a recent review
[Heidema et al., 2006].

Combinatorial methods search over all possible combi-
nations of loci to find combinations that are predictive of
the phenotype. The combinatorial method multifactor
dimensionality reduction (MDR) [Hahn et al., 2003; Ritchie
et al., 2001; Velez et al., 2007] was designed to detect
associations between multiple genetic markers and a
phenotype by examining higher-order interactions among
SNPs in a case-control setting. MDR combines two or more
variables into a single variable (hence leading to dimen-
sionality reduction); this changes the representation space
of the data and facilitates the detection of nonlinear
interactions among the variables.

An advantage of MDR over traditional statistical
modeling techniques like logistic regression lies in that
MDR is a model-free method that does not require the
specification of a genetic model. MDR has been success-
fully applied to detecting epistatic interactions in complex
human diseases such as sporadic breast cancer, cardiovas-
cular disease, and type II diabetes in genomic data
containing less than 30 SNPs [Cho et al., 2004; Coffey
et al., 2004; Ritchie et al., 2001].

A crucial challenge is the development of methods that
can efficiently identify epistasis in genome-wide data sets
that typically contains hundreds of thousands of SNPs. To
use a combinatorial method to examine all possible subsets
containing even a small number of SNPs is intractable. For
example, investigation of all possible subsets containing
five SNPs, in a genome-wide data set that has 500,000
SNPs, would require examining 2.6041�1026 subsets, an
astronomically large number.

In this paper, we develop and evaluate a multi-locus
method for detecting genetic interactions based on
Bayesian networks (BNs) and the minimum description
length (MDL) principle. We compare its ability to detect
epistatic interactions and its computational efficiency to
that of MDR using 28,000 simulated data sets generated
from 70 different genetic models [Velez et al., 2007].
Furthermore, we apply the method to a late onset
Alzheimer’s disease (LOAD) GWAS data set that contains
over 300,000 SNPs. It is well-known that the apoplipopro-
tein E (APOE) gene is associated with LOAD [Coon et al.,
2007; Corder et al., 1993; Pappassotiropoulos et al., 2006].
The APOE gene has three common variants e2, e3, and e4.
The least risk is associated with the e2 allele, while each
copy of the e4 allele increases the risk. We substantiate
previous results indicating that the GAB2 gene modifies
LOAD susceptibility in APOE e4 carriers. To our knowl-
edge, this is the first successful model-based epistatic
analysis of a high-dimensional genome-wide data set. A
strength of our method is that we should be able to extend
it using a heuristic search, thereby making it capable of
investigating complex gene-gene interactions in a genome-
wide data set.

METHOD

We now describe our new method for detecting gene-
gene interactions which we call the Bayesian network
minimum bit length (BNMBL) method. We first briefly
introduce BNs; then we give details of the BNMBL
method.

BAYESIAN NETWORKS

A BN [Jensen and Nielsen, 2007; Neapolitan, 2004] is a
probabilistic model that consists of a directed acyclic graph
(DAG) G 5 (V,E), where V is the set of vertices in G and E is
the set of edges, such that (G,P) satisfy the Markov
Condition. (G,P) satisfies the Markov condition if for each
variable X 2 V, X is conditionally independent of the set of
all its nondescendents given the set of all its parents. It is
possible to prove that (G,P) satisfies the Markov condition
if and only if P is equal to the product of its conditional
distributions of all nodes given their parents in G,
whenever these conditional distributions exist [Neapolitan,
2004]. That is, if our variables are X1; X2; . . . ; Xn, and PAi is
the set of parents of Xi, then

PðX1; X2; . . . ; XnÞ ¼
Yn

i¼1

PðXijPAiÞ:

So a BN is ordinarily represented by the DAG G and the
conditional probability distributions, which are called the
parameters in the BN. Using a BN inference algorithm
[Jensen and Nielsen, 2007; Neapolitan, 2004], we can
determine conditional probabilities of nodes of interest in
a BN given other nodes have certain values.

Methods for learning both the structure and parameters
in BNs from data have been developed [Neapolitan, 2004].
A well-known method for learning a BN from data
searches over a space of BNs and selects the one
that scores the highest on a Bayesian score [Cooper
and Herskovits, 1992]. Due to compelling results in
[Heckerman et al., 1995], when using the Bayesian score
we need to assess the value of a hyper-parameter a called
the prior equivalent sample size. A dilemma when using
the Bayesian score concerns the choice of a. Although
various researchers have forwarded different choices
based on philosophical/intuitive grounds [Neapolitan,
2004], no choice is commonly accepted. Moreover,
[Silander et al., 2007] provide a number of examples of
learning models from various data sets showing that the
choice of a can greatly affect the selected model.

An alternative to the Bayesian score is an information-
theoretic score that is based on the MDL principle
[Rissanen, 1978]. According to this principle, the best
model is one that minimizes the sum of the encoding
lengths of the data and the model itself. To apply this
principle to BNs, we must determine the number of
bits needed to encode a BN model and the number of bits
needed to encode the data given the BN model. Suzuki
[1999] developed an MDL score for a BN as follows:

Xn

i¼1

di

2
log2m�m

Xn

i¼1

Xqi

j¼1

Xri

k¼1

Pðxik; paijÞ log2

Pðxik; paijÞ

PðxikÞPðpaijÞ
:

ð1Þ

The variable m is the number of data items, di is the
number of parameters for the probability distribution for
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the ith node, ri is the number of states of Xi, xik is the kth
state of Xi, qi is the number of instantiations of the parents
of Xi, paij is the jth instantiation of the parents of Xi, and
the probabilities are computed using the data. The first
term gives the number of bits required to encode the BN
model and the second term gives the number of bits
needed to encode the data given the model.

Typically the space of BN models for domains containing
more than a few tens of variables is forbiddingly large.
Thus, heuristic algorithms are used to search over the
space of BN models [Neapolitan, 2004].

THE BNMBL METHOD

We use BNs to model the association of genetic variants
with a phenotype. In this application, a BN contains k
parent nodes and a single child node, where the parent
nodes are SNPs or other types of genetic variants and the
child node is the phenotype or the disease of interest.
Figure 1 shows such a model, which we call an epistatic
DAG model (EpiDAG). The BNMBL method scores all
such k-parent models up to a user-specified limit on
k using an MDL-based score which we develop next.

We need only score EpiDAGs like the one shown in
Figure 1. Each parameter in a DAG model learned from
data is a fraction with precision 1/m, where m is the
number of data items. So it takes log2m bits to store each
parameter. However, as explained in [Friedman, 1996], the
higher-order bits are not very useful, and we need use only
1
2 log2m bits to store a parameter. In this way we arrive at
the DAG penalty in Equation (1) (Suzuki [1999] obtained
the result in a different manner). Suppose that k SNPs have
edges to D in one of our EpiDAG models. Since each SNP
has three possible values there are 3k instantiations of the
parents of D. The average number of data items taking
the value of each instantiation is m=3k. If we approximate
the precision for each of D’s parameters by this average,
our penalty for each of these parameters is 1

2 log2
m
3k : Since

our penalty for each parameter in a parent SNP is 1
2 log2m,

our total DAG penalty for a given model is
3k

2 log2
m
3k 1 2k

2 log2m: When using this DAG penalty in
Equation (1), we call the score the BNMBL score.

While MDR evaluates a k-SNP model using multifold
cross-validation, BNMBL evaluates a k-SNP model directly
using the BNMBL score without performing cross-
validation, thereby making it more efficient.

EXPERIMENTS

We performed experiments comparing the performance
of BNMBL to that of MDR using synthetic data that was
originally used to evaluate MDR, and we further evaluated
BNMBL using a LOAD GWAS data set. MDR v. 1.25,
which is available at www.epistasis.org, was used to run

MDR. We implemented BNMBL in the Java programming
language. All experiments were run on a PC running
Windows XP with a 2.8 GHz processor and 3 GB of RAM.

DATA SETS

The synthetic data set. Our experiments used
synthetic data based on 70 genetic models of epistatic
interactions. Each model contains a different penetrance
function that defines a probabilistic relationship between
genotype and phenotype where susceptibility to disease
depends on two interacting loci. The models, which are
described in Supplementary Table I to [Velez et al., 2007],
are distributed uniformly among seven broad-sense herit-
abilities ranging from 0.01 to 0.40 (0.01, 0.025, 0.05, 0.10,
0.20, 0.30, and 0.40) and two minor allele frequencies
(0.2 and 0.4). To study the effect of sample size, from a given
model, 100 data sets were generated for each of four sample
sizes (200, 400, 800, and 1,600) where each data set contains
equal number of disease and healthy samples. For a
generated pair of epistatic SNP values, a set of 18 SNPs
that were assigned random values was appended to
simulate SNPs that are noninformative with respect to the
disease status. The data sets were obtained from http://
discovery.dartmouth.edu/epistatic_data/VelezData.zip.

The GWAS data set. The LOAD GWAS dataset
contains the data from three cohorts and was originally
analyzed in [Reiman et al., 2007]. Each record in this data
set consists of genotype information, APOE status, and
LOAD status for 1411 subjects. Of the 1411 subjects, 861
have LOAD and 550 do not, and 644 are APOE e4 carriers
and 767 are noncarriers. The study investigators typed
502,627 SNPs for each subject and after applying quality
controls analyzed 312,316 SNPs.

The BNMBL method was applied to EpiDAGs in which
the disease node (LOAD) has precisely two parents, one
being the APOE gene and the other being one of the
312,316 SNPs. These models were scored using the LOAD
data set mentioned above.

EVALUATION METHODOLOGY

Using the synthetic data, the performances of MDR and
BNMBL were compared on power (accuracy) and compu-
tational efficiency (speed). For a set of 100 data sets
generated from a model, power refers to the number of
data sets on which an algorithm correctly selects the model
containing both interacting SNPs. The Wilcoxon two-
sample paired signed rank test was used to compare the
power of MDR and BNMBL.

Subramanian et al. [2005] developed an enrichment score
that represents the degree to which a set is overrepresented
at the extreme top or bottom of an ordered list. This score
was used to evaluate the results obtained from applying
BNMBL to the GWAS data set.

RESULTS

RESULTS FOR THE SYNTHETIC DATA SETS

Velez et al. [2007] showed that MDR had the lowest
detection sensitivity for models 55–59 in Supplementary
Table I to [Velez et al., 2007]. These models have the
weakest broad-sense heritability (0.01) and a minor allele
frequency of 0.2. Table I shows the powers for MDR and

S1 S2 Sj Sn

D

Fig. 1. A 3-SNP EpiDAG. The total number of SNPs in the
domain is n.
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BNMBL for these five models. BNMBL outperformed
MDR in 16 of the experiments involving the most difficult
models, whereas MDR outperformed BNMBL only two
times.

Table II shows the sums of the powers overall all 70
models and the P-values obtained from the Wilcoxon two-
sample paired signed rank test comparing the powers of
MDR and BNMBL over all 70 models. BNMBL signifi-
cantly out-performed MDR on all sample sizes.

Table I shows that at large sample sizes (1,600 data
items), BNMBL correctly identified 74 more difficult
models than MDR, while Table II indicates that at large
sample sizes BNMBL correctly identified 91 more total

models than MDR. The majority of the improvement
obtained by using BNMBL concerns the difficult models.

Table III shows the mean running times in seconds
obtained by averaging the running times over the data sets
generated from all 70 genetic models. MDR is several
orders of magnitude slower than BNMBL. The superior
running time of BNMBL is due largely to its ability to use
the entire data set for computing the score of each model,
while MDR performs multi-fold cross-validation to score
the models.

RESULTS FOR THE GWAS DATA SET

We applied the BNMBL method to score EpiDAG
models in which the disease node (LOAD) has precisely
two parents, one being the APOE gene and the other being
one of the 312,316 SNPs investigated. Each model was
evaluated in the following three modes: (1) the model was
scored after the heterozygote state of the SNP was grouped
with the homozygote state containing the lower frequency
allele; (2) the model was scored after the heterozygote state
of the SNP was grouped with the homozygote state
containing the higher frequency allele; and (3) the
maximum of the scores obtained from 1 and 2 above was
assigned to the model.

We briefly describe the results obtained by Reiman et al.
[2007] who investigated the association of these SNPs
separately in APOE e4 carriers and in APOE e4 noncar-
riers. A discovery cohort and two replication cohorts were
used in the study. Within the discovery subgroup consist-
ing of APOE e4 carriers, 10 of the 25 SNPs exhibiting the
greatest association with LOAD (contingency test P-value
9� 10�8 to 1� 10�7) were located in the GRB-associated
binding protein 2 (GAB2) gene on chromosome 11q14.1.
Associations with LOAD for six of these SNPs were
confirmed in the two replication cohorts. Combined data
from all three cohorts exhibited significant association
between LOAD and all 10 GAB2 SNPs. These 10 SNPs
were not significantly associated with LOAD in the
APOE e4 noncarriers.

Reiman et al. [2007] used Haploview v3.32 to determine
the linkage disequilibrium structure of the chromosome
11q14.1 region surrounding GAB2 in each of the three
cohorts they investigated. The GAB2 gene is encompassed
by a block extending from SNP rs901104 to SNP rs2373115.
There are 18 GAB2 SNPs located on this block which
survived Haploview’s quality metrics and were part of the
significant haplotype. The investigators found that these
18 SNPs have three haplotypes, one extremely common
one is associated with an increased risk for LOAD in
APOE e4 carriers, a second common one is associated with
a decreased risk for LOAD in APOE e4 carriers, and a third
rare one is unrelated to LOAD in APOE e4 carriers.

The SNPs we investigated contained 14 of these 18
SNPs. Table IV shows their ranks among all 312,316 SNPs
according to their BNMBL scores using Mode 1. Based on
the enrichment score developed by Subramanian et al.
[2005] these 14 SNPs are significantly overrepresented
near the top of the list of all SNPs (P-value 5
3.9759� 10�47).

The rankings of the GAB2 SNPs were somewhat worse
when Mode 2 was used to compute the score, and they
were hardly changed when Mode 3 was used to compute
the score. For all SNPs on GAB2 the maximizing score
yielding the score in Mode 3 came from the genotypic

TABLE I. Columns MDR and BNMBL show the powers
for each of the methods for models 55-59

Data set size Model MDR BNMBL

200 55 3 7
56 3 4
57 3 5
58 3 7
59 3 3

Total (200) 15 26
400 55 8 8

56 7 9
57 11 9
58 15 27
59 8 7

Total (400) 49 60
800 55 26 30

56 22 36
57 25 29
58 49 67
59 18 24

Total (800) 140 186
1,600 55 66 81

56 59 83
57 68 81
58 88 96
59 49 63

Total (1,600) 330 404

Total is the sum of the powers over the five models.

TABLE II. The sums of the powers over all 70 data sets
for MDR and BNMBL appear in Columns 2 and 3, and
P-values appear in Column 4

n MDR BNMBL P-value

200 4,904 5,016 0.009
400 5,796 5,909 0.004
800 6,408 6,517 0.003
1,600 6,792 6,883 0.012

TABLE III. Mean running times in seconds

n MDR BNMBL

200 119.81 0.0198
400 146.64 0.0307
800 207.98 0.0498
1,600 241.74 0.0966
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combination in Mode 1, indicating that the combinations
used in Mode 1 are likely to be correct.

Table V shows the ranks obtained using Mode 3. The 14
GAB2 SNPs are significantly overrepresented near the top
of the list of all SNPs (P-value 5 1.4199� 10�44).

Table VI shows the highest scoring SNPs obtained using
Mode 1. We mentioned previously that Reiman et al. [2007]
found that 10 of the 25 SNPs with the most significant
LOAD association in APOE e4 were located in the GAB2
gene. Table I shows that 8 of our highest scoring 14 SNPs
were among these 10 SNPs. Also, all 10 SNPs appear

among the highest scoring 47 SNPs. The enrichment
score showed that these 10 SNPs are significantly
overrepresented near the top of the list of all SNPs
(P-value 5 2.1284� 10�39).

Similar to the results in [Reiman et al., 2007], 9 of our top
25 SNPs are located on GAB2. The remaining 16 SNPs are
scattered among chromosomes 1(2), 2, 3, 4, 5, 6, 8 (2), 9, 10
(2), 13, 15 (2), and 16. The high-scoring SNPs on the
chromosomes containing two such SNPs (chromosomes 1,
8, and, 15) are not located close to each other. So, the
support for any other locus being associated with LOAD is
far weaker than the support for GAB2 (recall the extreme
significance level at which the GAB2 SNPs are over-
represented near the top of our list), and we suspect that
these other associations are false positives.

Our results using BNMBL support the results in
[Reiman et al., 2007], namely that GAB2 is associated with
LOAD in APOE e4 carriers.

An advantage of using BNMBL for knowledge discov-
ery in this domain is that there is no need to analyze the
statistical relevance of a SNP separately under different

TABLE IV. Ranks according to their BNMBL scores for
the 18 GAB2 SNPs using Mode 1

SNP BNMBL rank Allele grouping

rs901104 5 CT/TT, CC
rs1385600 47 TC/CC, TT
rs11237419 NA NA
rs1007837 2 TC/CC, TT
rs2450130 18 TG/GG, TT
rs2510054 NA NA
rs11237429 NA NA
rs2510038 28 TC/CC, TT
rs2511170 NA NA
rs4945261 13 GA/GG, AA
rs7101429 9 GA/AA, GG
rs10793294 10 AC/CC, AA
rs4291702 11 CT/TT, CC
rs11602622 153 AG/GG, AA
rs10899467 21 GT/TT, GG
rs2458640 158 AC/CC, AA
rs10793302 33 CT/TT, CC
rs2373115 26 GT/TT, GG

NA means the SNP was not in the data set and therefore was not
scored.

TABLE V. Ranks according to their BNMBL scores for
the 18 GAB2 SNPs using Mode 3

SNP BNMBL rank Allele grouping

rs901104 5 CT/TT, CC
rs1385600 67 TC/CC, TT
rs11237419 NA NA
rs1007837 2 TC/CC, TT
rs2450130 20 TG/GG, TT
rs2510054 NA NA
rs11237429 NA NA
rs2510038 32 TC/CC, TT
rs2511170 NA NA
rs4945261 14 GA/GG, AA
rs7101429 10 GA/AA, GG
rs10793294 11 AC/CC, AA
rs4291702 12 CT/TT, CC
rs11602622 231 AG/GG, AA
rs10899467 23 GT/TT, GG
rs2458640 237 AC/CC, AA
rs10793302 40 CT/TT, CC
rs2373115 30 GT/TT, GG

NA means the SNP was not in the data set and therefore was not
scored.

TABLE VI. The highest scoring SNPs according to
BNMBL using Mode 1

SNP BNMBL score Chromosome GAB2 Reiman

1 rs2517509 0.132261 6
2 rs1007837 0.130962 11 Yes Yes
3 rs12162084 0.130418 16
4 rs7097398 0.130319 10
5 rs901104 0.130189 11 Yes Yes
6 rs7115850 0.130176 11 Yes Yes
7 rs7817227 0.130088 8
8 rs2122339 0.130016 4
9 rs7101429 0.129993 11 Yes Yes
10 rs10793294 0.129965 11 Yes Yes
11 rs4291702 0.129917 11 Yes Yes
12 rs6784615 0.129863 3
13 rs4945261 0.129632 11 Yes Yes
14 rs2373115 0.129564 11 Yes Yes
15 rs10754339 0.129321 1
16 rs17126808 0.129319 8
17 rs7581004 0.129294 2
18 rs475093 0.129209 1
19 rs2450130 0.129056 11 Yes
20 rs898717 0.128885 10
21 rs473367 0.128845 9
22 rs8025054 0.128729 15
23 rs2739771 0.128634 15
24 rs826470 0.128624 5
25 rs9645940 0.128531 13
26 rs17330779 0.128473 7
27 rs6833943 0.128301 4
28 rs2510038 0.128235 11 Yes Yes
29 rs12472928 0.128175 2
..
.

33 rs10793302 0.127787 11 Yes
..
.

47 rs1385600 0.126943 11 Yes Yes

The column labeled GAB2 contains a ‘‘yes’’ if the SNP is located
on GAB2; the column labeled ‘‘Reiman’’ contains a ‘‘yes’’ if the
SNP is one of the 10 high scoring SNPs on GAB2 identified by
Reiman et al. [2007].
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conditions (e.g. first in all subjects, then in e4 carriers, and
finally in e4 noncarriers). Rather we score all relevant
models using BNMBL.

Recall that the models were scored using three different
modes. The average running time (over the three modes)
to score all 312,316 SNPs in combination with the APOE
gene was approximately 20 min.

DISCUSSION

Identifying interactions among multiple genetic variants
and environmental factors is an important challenge in
elucidating the etiology of common diseases. We developed
a method called BNMBL for identifying genetic interactions
based on BNs and the MDL principle. Our experimental
results indicate that BNMBL has significantly greater
power and is substantially faster computationally than
MDR. However, to establish that BNMBL outperforms
MDR, further investigation comparing the systems under a
wider range of circumstances is warranted.

BNMBL has several other advantages over MDR that
derive from its being based on BN models. First, in real
data there can be many competing interactions and
different pathways. BNs handle this situation in a general
way. A second advantage is that we can readily include
other variables in the BN besides SNPs and the disease
node. For example, we can add nodes that represent the
effects of the disease. Also, we can add nodes that
represent environmental causes of the disease and of other
loci that might affect the disease. In particular, we can use
this latter approach in pharmacogenomics to investigate
the influence of genetic variation on drug response.
Finally, the BN-based approach automatically handles
unbalanced data sets. Velez et al. [2007] developed and
an in order to enable MDR to handle this situation.

Reiman et al. [2007] investigated the association of
312,316 SNPs with LOAD in APOE e4 carriers, and
discovered that 10 of the 25 SNPs exhibiting the greatest
association with LOAD were located in the GAB2 gene.
Using the same data set, we scored all 3-node EpiDAGs in
which the disease node (LOAD) has precisely two parents,
one being the APOE status and the other being one of the
312,316 SNPs investigated. We found that all 10 SNPs
discovered by Reiman et al. [2007] were in the top 47 SNPs
identified using BNMBL and 8 of those SNPs occurred
among the top 14 SNPs. This result demonstrates that
BNMBL is a promising tool for identifying interacting
genetic variants.

We did not score each pair-wise combination of SNPs in
the GWAS data set. Rather we only scored each SNP in
combination with the APOE gene. If we did score each
pair-wise combination and the results were as good as
those obtained when only combinations including APOE
were scored, further support would be provided for the
usefulness of BNMBL. This is an avenue for future
research.

MDR is a combinatorial method and therefore cannot be
used to investigate interactions involving more than
several interacting loci when we have the large number
of loci often found in a GWAS data set. BNMBL is also a
combinatorial method. However, heuristic algorithms
have been developed to search over the space of all DAGs
when learning a DAG model from data [Neapolitan, 2004].
In future research we plan to develop an efficient heuristic

algorithm tailored specifically to EpiDAGs like the one
shown in Figure 1. So, perhaps the greatest potential of the
BNMBL approach is that we can extend it to a method that
can investigate complex gene-gene interactions using a
large GWAS data set.
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