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Abstract. Patient-specific models are instance-based learn algorithms
that take advantage of the particular features of the patient case at hand
to predict an outcome. We introduce two patient-specific algorithms
based on decision tree paradigm that use AUC as a metric to select
an attribute. We apply the patient specific algorithms to predict out-
comes in several datasets, including medical datasets. Compared to the
standard entropy-based method, the AUC-based patient-specific deci-
sion path models performed equivalently on area under the ROC curve
(AUC). Our results provide support for patient-specific methods being
a promising approach for making clinical predictions.

Keywords: Classification problems * Approach instance-based + Area
under the roc curve

1 Introduction

Clinical decision-making may be improved by using predictive models [1]. Pre-
dicting patient outcomes under uncertainty constitute an important healthcare
problem. Enhanced decision models can lead to better patient outcomes as well
as efficient use of healthcare resources.

The typical paradigm in predictive modeling is to learn a single model from
a database of patient cases, which is then used to predict outcomes for future
patient cases [2]. This approach is known as population-wide model because it
is intended to be applied to an entire population of future cases. Examples of
popular population-wide methods are decision trees, logistic regression, neural
networks and Bayesian networks.

In contrast to that general approach, a patient-specific model consists of learn-
ing models that are tailored to the particular features of a given patient. Thus,
a patient-specific model is specialized to the patient case at hand, and it is opti-
mized to predict especially well for that case. Moreover, patient-specific mod-
els can also be seen as examples of instance-based learning schemes, of which
k-nearest neighbor, local regression and lazy decision trees are examples.
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Instance-based algorithms learn a distinct model for a test instance and take
advantage of the features in the test instance to learn the model [3]. Typically,
the instance-based algorithms are lazy, since no model is constructed a priori
before a test instance becomes available, and a model is learned only when a
prediction is needed for a new instance [4]. In contrast, algorithms that learn
population-wide models are eager since such explicitly build a model form the
training data before a test instance becomes available.

There are several advantages of patient-specific models over population-wide
methods. For instance, patient-specific models may have better predictive perfor-
mance for taking advantage of any particular characteristic of the case at hand,
whereas population-wide methods converge to an average method, derived for
an entire population. Second, a patient-specific model structure is usually sim-
pler than that of its population-wide counterpart. Thus, a patient-specific model
can provide a more succinct explanation of its decision. Third, the construction
patient-specific models may be computationally faster, though this advantage
is offset by the observation that a patient-specific method has to construct a
distinct model for each patient case of interest while a population-wide method
has to construct just a single model. Finally, the task of handling of missing
features is simplified on patient-specific approach.

In this paper, we investigate the performance of two patient-specific methods,
based on the lazy decision tree approach. We compare the performance of the
AUC-based patient-specific methods with the entropy-based model. We focus on
the discriminative performance of the three methods and evaluate them using
the area under the ROC curve (AUC) [5].

The remainder of this paper is organized as follows. Section 2 presents back-
ground and related work on instance-based methods. Section 3 provides details of
the patient-specific decision path algorithms that we have developed. Section 4
describes the datasets, experimental methods and presents and discusses the
results of the patient-specific decision path algorithm on several datasets. Section 5
presents our conclusions.

2 Background

The canonical instance-based method is a kind of nearest-neighbor technique,
that is, the most similar training instance to a given the test instance is located
its target value is returned as the prediction [6].For a test instance, the k-
Nearest Neighbor (KNN) method, for example, selects the k most similar train-
ing instances and either averages or takes a majority vote of their target values.
Modified version of kNN have been applied successfully to medical databases for
diagnosis and knowledge extraction [7]. Other instance-based methods are not as
reliant on a similarity measure as is the case for the nearest-neighbor methods,
taking advantage of the values of the predictors in the test instance to learn a
model.

Friedman et al. have described the LazyDT method [4] that searches for the
best CART-like decision tree for a test instance. When compared to standard
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population-wide methods, for inducing decision trees, as ID3 and C4.5, LazyDT
does not perform pruning, handles only discrete variables, and has higher accu-
racies on average.

Zheng et al. have developed an instance-based method called the Lazy Bayesian
Rules (LBR) learner that builds a rule tailored to the values of the predictors of
the test instance, used to classify it [8]. A LBR rule consists of: (1) a conjunc-
tion of the features (predictor-value pairs) present in the test instance as the
antecedent, and (2) a consequent nave Bayes classifier that consists of the target
variable as the parent of all other predictors that do not appear in the antecedent.
The classifier parameters are estimated from those training instances that satisfy
the antecedent. A greedy step-forward search selects the optimal LBR rule for a
test instance to be classified. LBR uses values of predictors in the test instance
to drive the search for a suitable model in the model space and, when compared
to a variety of population-wide methods, LBR has reached higher accuracies on
average.

Visweswaran et al. have developed and applied an instance-based algorithm
that performs Bayesian model averaging over LBR models [2,9], using the fea-
tures of the test case to drive the search. The prediction for the test case target
variable is obtained by combining the predictions of the selected models weighted
by their posterior probabilities. This method has obtained higher accuracies than
LBR on a range of non-medical datasets and also performed better than several
population-wide methods on a pneumonia dataset, when evaluated within a clin-
ically relevant range of the ROC curve. Furthermore, instance-based algorithms
that use the test instance to drive the search over a space of Bayesian network
models have been developed and applied to patient-specific modeling with good
results [10,11].

Ferreira et al. developed patient-specific decision path (PSDP) algorithms
that can build a decision path to predict patient outcome [12]. Given a patient for
whom the values of the features are known, these algorithms construct a decision
path using a subset of those features. Two selection criteria were investigated
for selecting features: balanced accuracy and information gain. Results obtained
with those algorithms using clinical datasets were compared with CART using
the AUC metric.

3 Patient-Specific Decision Path Algorithms
Based on AUC

The proposed patient-specific decision path algorithm uses AUC as a metric to
select patient‘s features that will compose the path [13]. The Area under the
ROC Curve (AUC) is a widely used measured of performance of supervised
classification rules. It has the attractive property of circumvent the need to
specify misclassification costs.

The use of AUC as a metric to select attributes in a decision tree was intro-
duced by Ferri and colleagues [14,15]. Based on the optimal choice of possible
labellings of the tree, the AUC-split criterion leads to good AUC values, without
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PSDP-AUC-Split (labels, dataset, testset)
INPUT: labels contain a set of possible labels to predict,
dataset is database,
testset is a test case to predict
OUTPUT: an array with the label, estimates probability of the label and the path.

LOOP: until dataset to be empty, all cases in dataset have the same target or the set of atributes to be empty

FOR each testeset(i)
subset = getSubSet(dataset, testset(i))
diff subset = dataset - subset

partition(1) = counting of positive and negative values of subset
partition(2) = counting of positive and negative values of diff subset

coordinates = sort(partition, ‘descend”)

fpr = false positive rate based on negative coordinates matrix
tpr = true positive rate based on positive coordinates matrix

AUC = trapz(fpr, tpr) %this function calculate the area of trapezoid formed by coordinates
v_AUC(i) =AUC

IF AUC < BestAUC THEN
BestAUC =AUC
END IF
END FOR

path = attribute selected according BestAUC
dataset = dataset according attribute selected
dataset = remove atribute selected
eProb_path = calculate probability of predicted label to belong to positive or negative class
predicted_label = max(eProb_path)
END LOOP
RETURN eProb_path, predicted label and path

Fig. 1. Pseudocode for PSDP-AUC-Split algorithm.

compromising the accuracy if a single labelling is chosen. Thus, for a two class
classification problem and a tree with n leaves, there are 2™ possible labellings,
of which n + 1 are optimal. That optimal labelling gives the convex hull for the
considered leaves. Figure 1 shows the pseudocode of the patient-specific decision
path that uses the AUC-split proposed by Ferri.

This algorithm receives as parameters the dataset, the label of each dataset
instance and the test instance in which you want to classify. As shown in Fig. 1,
the first step of the algorithm is to select an attribute of the test instance by
times, calculate the partitions according to the value of this attribute in this
instance using as reference the training dataset in order setting the partitions
of each one of subsets (number of positive and negative cases). The matrix
coordinates receives the matrix partition sorted in decreasing so that the AUC
value obtained is the maximum. The calculation of the AUC is done by the
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function trapz [16], written in Matlab [17], using as parameters the false positive
rate and true positive rate which are calculated based on coordinates matrix.
After this calculation, the value is stored in v_AUC vector. All these steps will
be repeated for the other attributes. At the end of the calculation for all, the
attribute with best AUC value will be selected and so that one of the stopping
conditions is true, the path will be complete together the predicted label.

In contrast, another alternative way to use the AUC metric to select patient
features requires a prediction for class probability or some other score as pro-
posed by Fawcett. In this case, a leave-one-out cross-validation scheme was
employed in order to generate that probability estimate and further calculat-
ing a Mann-Whitney-Wilcoxon test statistic, which direct relates to the AUC.
To avoid overfitting, Laplace smoothing [18] was employed when estimating class
probabilities. The patient-specific decision path that uses this standard approach
just described is shown in the pseudo-code of Fig. 2.

The main difference between PSDP-STD-AUC and PSDP-AUC-Split algo-
rithms are the steps prior to the calculation of the AUC. An operation proba-
bility estimates is performed for all cases of dataset. However, these estimates
are calculated according to the subset of training instances that have the same
value of the test instance and the subset of training instances that have different
values of the test instance. After the calculations of these estimates according to
Laplace smoothing, the AUC is calculated by the function col AUC' [19] written
in Matlab [17], using as parameters all probability the true class of the train-
ing set, accompanied by the labels of each instance. The following steps of this
algorithm are identical to the steps described in the previous paragraph for the
PSDP-AUC-Split algorithm.

4 Experimental Results

In this section we presented the datasets on which the algorithms were evaluated,
the preprocessing of the datasets, the performance measures used in the eval-
uation, and the experimental settings used for the algorithms. Amongst those
datasets, there are clinical datasets including two on heart disease, two on dia-
betes and one cancer patients. Brief descriptions of the datasets are given in
Table 1.

4.1 Datasets

All datasets used to test the algorithms were taken from the UCI Repository and
are used on classification tasks. The continuous variables were discretized using
the entropy-based method developed by Fayyad and Irani [20]. Although big part
of data presented in the datasets are numeric, they are not used to calculate the
area under the curve. The AUC is calculated receiving as parameters the positive
probabilities estimated for each instance of the dataset, with the respective labels
of each of these instances. The discretization process is conducted in order to
facilitate the handle of data by the algorithm, creating ranges of values and using
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PSDP-STD-AUC (labels, dataset, testset)
INPUT: labels contain a set of possible labels to predict,
dataset is database,
testset is a test case to predict
OUTPUT: an array with the label, estimates probability of the label and the path.

LOOP: until dataset to be empty, all cases in dataset have the same target or the set of atributes to be empty
eProb = calculate the probability of happen two class for each instance of dataset

FOR each testeset(i)
subset = getSubSet(dataset, testset(i))
diff subset = dataset - subset

eProb(subset) = calculate probability according number of testset
eProb(diff_subset) = calculate probability different of testset

AUC = colAUC(true_probability of dataset, labels)
v_AUC(i) =AUC

IF AUC < BestAUC THEN
BestAUC = AUC
END IF
END FOR

path = attribute selected according BestAUC
dataset = dataset according attribute selected
dataset = remove atribute selected
eProb_path = calculate probability of predicted label to belong to positive or negative class
predicted label = max(eProb_path)
END LOOP
RETURN eProb_path, predicted label and path

Fig. 2. Pseudocode for PSDP-STD-AUC algorithm.

a single number or character that represents each interval. Missing values were
imputed using an iterative non-parametric imputation algorithm described by
Caruana [21] which has previously been applied to fill in missing predictor values
for medical datasets with good results.

4.2 Test Settings

The proposed patient-specific decision path algorithms were implemented in
MATLAB (R2013b version). We evaluated the algorithms using 20-fold cross-
validation. This method randomly divided each dataset into 20 approximately
equal sets such that each set had a similar proportion of individuals who devel-
oped the positive outcome. For each algorithm, we combined 19 sets and eval-
uated it on the remaining test set, and we repeated this process once for each
possible test set. We thus obtained a prediction for the outcome variable for
every instance in a dataset. The final result of the algorithms will be presented
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Table 1. Brief description of used UCI datasets

Dataset Instances | Attributes | Positive cases (%)
Australian | 690 14 44%
Breast 699 9 34 %
Cleveland | 296 13 45%
Corral 128 6 44 %
Crx 653 15 45 %
Diabetes | 768 8 35%
Flare 1066 10 17%
Glass 2 163 9 47%
Heart 270 13 44%
Pima 768 8 35%
Sonar 208 60 53%
Tic-tac-toe | 958 9 65 %
Vote 435 16 61%

in terms of AUC and processing time. The algorithms that used the AUC mea-
sures to select an attribute were compared with the entropy-based algorithm
proposed in [12].

All experiments were performed on a PC with a processor Intel Core i5 two
cores with frequency of 2.5GHz, 8GB of RAM and running the operating system
Mac OS X 64-bit Yosemite.

4.3 Results

Table 2 shows the AUCs obtained by the three algorithms. For each dataset, we
present the mean AUC based on the 20-fold cross-validation and the respective
confidence intervals at the 0.05 level. Overall, the two AUC based split algorithms
perform comparably to the entropy method. Except for the Crx and Tic-tac-
toe datasets, there is no statistically significant difference between the three
methods.

In the Crx dataset, the entropy based model was statistically significant
better than the other two methods with an mean AUC of 0.92. As for the Tic-tac-
toe dataset, the PSDP-STD-AUC performed better, with a mean AUC of 0.98.
ANOVA analysis [22] was performed and we verify that there is not statistical
significant different between the three methods (p >> 0.05).

Table3 shows the execution time of the proposed algorithms (means pm
standard deviation). Each dataset was run 30 times for each model. Because the
entropy based algorithm requires less operations, it presented better run time
methods. The PSDP-STD-AUC requires an estimation of the class probabili-
ties, which demands several computational operations. Even though the PSDP-
AUC-Split does not require class probability estimation. Sorting of the leaves is
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Table 2. AUCs for the datasets in Table1. For each algorithm the table gives the
mean AUC obtained from 20-fold cross-validation along with 95 % confidence intervals.

Statistically significant mean AUC are in bold.

Datasets Entropy PSDP-STD-AUC | PSDP-AUC-Split
Australian | 0.919 [0.910,0.928] | 0.896 [0.877,0.916] | 0.889 [0.869,0.909]
Breast 0.984 [0.980,0.988] |0.985 [0.978,0.992] |0.983 [0.975,0.991]
Cleveland | 0.862 [0.837,0.888] | 0.845 [0.779,0.911] | 0.834 [0.773,0.895]
Corral 1.000 [1.000,1.000] |1.000 [1.000,1.000] |1.000 [1.000,1.000]
Crx 0.920 [0.911,0.929] | 0.879 [0.855,0.903] |0.885 [0.861,0.909]
Diabetes | 0.827 [0.812,0.842] | 0.815 [0.781,0.850] | 0.820 [0.785,0.855]
Flare 0.730 [0.717,0.745] |0.718 [0.680,0.757] |0.715 [0.681,0.749]
Glass 2 0.831 [0.795,0.867] | 0.870 [0.794,0.946] |0.865 [0.785,0.945]
Heart 0.879 [0.862,0.898] | 0.877 [0.832,0.921] |0.877 [0.831,0.923]
Pima 0.825 [0.810,0.840] |0.813 [0.769,0.858] |0.811 [0.781,0.841]
Sonar 0.889 [0.867,0.911] | 0.862 [0.818,0.907] | 0.887 [0.835,0.939)
Tic-tac-toe | 0.960 [0.952,0.969] | 0.989 [0.978,1.000] | 0.977 [0.968,0.986]
Vote 0.986 [0.982,0.990] |0.985 [0.970,1.000] |0.985 [0.975,0.995]

Table 3. Results of execution time for proposed algorithms

Datasets Entropy PSDP-STD-AUC | PSDP-AUC-Split
Australian | 3.346 +0.046 | 35.821 +1.464 7.388 £0.138
Breast 1.140 +0.010 | 10.102 40.048 2.115 £0.025
Cleveland |1.091 +0.011 | 10.827 +0.052 2.466 £0.026
Corral 0.170 4+0.005 | 1.651 +0.019 0.341 £0.009
Crx 3.342 £0.032 | 34.111 £0.094 7.620 +£0.229
Diabetes 1.974 +0.013 | 17.305 +0.094 4.002 £0.040
Flare 4.348 £0.021 | 36.206 +1.179 8.019 £0.322
Glass 2 0.427 £0.007 | 3.298 +0.038 0.920 +0.014
Heart 1.042 +£0.011 | 10.301 £0.057 2.220 £0.019
Pima 1.973 £0.012 | 19.175 4+0.093 3.781 +0.137
Sonar 3.730 £0.029 | 34.608 +0.134 8.040 +0.038
Tic-tac-toe | 2.527 £0.013 | 26.731 £0.124 4.647 +0.029
Vote 1.366 £0.017 | 14.300 £0.089 2.686 +0.018

necessary to obtain the convex hull, for each split, also demanding extra CPU
time. As per an ANOVA analysis, we verified that there is significant difference
on execution time, since the entropy-based model runs faster (p << 0).
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5 Conclusions

We have introduced PSDP, a new patient-specific approach for predicting out-
comes, based on the AUC metric to select patient attributes. We evaluated this
method on several datasets, including medical data. The results show that the
PSDP-AUC based methods performs equivalently to the standard information
based method. These results are encouraging and provide support for further
investigation into the PSDP methods and more extensive evaluation on a wide
range of datasets.

In future work, we plan to examine the complexity of the models generated
by the PSDP methods and also explore other criteria for selecting predictors.
Moreover, the presentation of patient-specific decision paths as IF-THEN rules
to a domain expert may provide insight into patient populations.

The current PSDP methods have several limitations. One limitation is that
they handle only discrete variables and continuous variables have to be dis-
cretized. A second limitation is the execution time on large data samples.
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