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Abstract 

Poor electronic medical record (EMR) usability is detrimental to both clinicians and patients. A better EMR would 

provide concise, context sensitive patient data, but doing so entails the difficult task of knowing which data are 

relevant. To determine the relevance of patient data in different contexts, we collect and model the information seeking 

behavior of clinicians using a learning EMR (LEMR) system. Sufficient data were collected to train predictive models 

for 80 different targets (e.g., glucose level, heparin administration) and 27 of them had AUROC values of greater than 

0.7. These results are encouraging considering the high variation in information seeking behavior (intraclass 

correlation 0.40). We plan to apply these models to a new set of patient cases and adapt the LEMR interface to 

highlight relevant patient data, and thus provide concise, context sensitive data. 

Introduction 

Clinicians and other health care providers remain dissatisfied with electronic medical records (EMRs). 1 Poor EMR 

usability results in substantial amounts of time spent using them (up to two-thirds of clinician time 2), takes attention 

away from patients, 3 and impacts patient satisfaction. 4 EMR usability challenges are highlighted by the American 

Medical Association in a published list of priorities for improving EMR usability. 5 A top priority is to reduce the 

cognitive workload of EMRs by providing “concise, context sensitive” data.   

Clinicians typically navigate the EMR laboriously to seek data they need to evaluate and make decisions for their 

patients. While navigating the EMR, they are burdened with viewing and filtering out extraneous data. A more usable 

EMR would act like an intelligent agent and provide concise, relevant, and context sensitive data. An EMR can identify 

and provide relevant data, if information seeking behaviors can be predicted accurately. This paper describes a method 

for predicting clinician information seeking behaviors and a preliminary evaluation of the method. 

Background 

Clinician information seeking behavior varies by context. Context includes (1) EMR user type—a clinician, a nurse 

and a physician assistants have different information seeking behaviors 6; (2) clinical task—a clinician has different 

information seeking behavior when performing differential diagnosis than when performing medication 

reconciliation; and (3) patient case—the same clinician when performing the same clinical task for different patients 

may have different information seeking behavior that are driven by differences in diagnoses. 

Current EMRs support data and functionality needs across the spectrum of user-task-case contexts, and this broad 

support comes at a cost of decreased usability in any specific context. Customization by vendors or by local EMR 

technical teams improves EMR usability, but these are both difficult and inflexible. To improve EMR usability across 

many specific contexts, Covvey et al. 7 proposed a systematic approach to “defining, eliciting, and specifying the 

structure and the information content of the electronic health record” for all unique contexts.  

Anticipating information seeking behavior for every EMR user-task-case context and meeting those needs is very 

challenging. It has been done for some specific contexts (e.g., intensive care unit (ICU) clinicians determining 

diagnosis and treatment for newly admitted patients 8) and the knowledge gained has been applied to create novel 

EMR interfaces 9. A structured approach for eliciting data needs (i.e., questionnaires 10 and observations 11) and a 

manual approach for then tailoring the EMR interface to meet those needs might be feasible for a specific user type 

and context. However, this approach is time consuming, and it would be very expensive to replicate it for every user 

type and context. The approach also ignores the wide variation in patient cases within a given context. It is not feasible 

to elicit and manually tailor an EMR interface to all the possible user types, contexts, and patient cases. Is there a 

feasible way to automatically model data needs for a given user-task-case context? If so, such a model could be applied 

to anticipate data that will be sought and adapt the EMR interface to facilitate clinician access to that data.  



We are developing a data-driven approach to predict and highlight data in the EMR that are most likely to be sought 

in a user-task-case context. The method relies on a combination of data of past patient cases that are readily available 

in the EMR, information seeking behavior data that we elicit from clinicians, and on construction of machine learning 

models that can be applied to the current patient to identify relevant patient data. Our ultimate goal is to apply such 

models to dynamically adapt the EMR interface to highlight context-relevant patient data 12. We call such a system a 

Learning Electronic Medical Record (LEMR) system. In this paper, we describe the ICU EMR data, the information 

seeking behavior data that were elicited from clinicians, the machine learning models that we developed, and 

preliminary evaluation of these models. 

Methods 

Our goal is to build models that use patient data that are recorded in the EMR to predict which data items would be 

sought by clinicians and, therefore, should be highlighted in a future patient case. The predictors are all the data items 

in the patient record and the targets are items that might be highlighted, with one distinct model for each item. In the 

rest of this section, we describe our methods for collecting clinician information seeking behavior (including a LEMR 

interface, a set of de-identified patient cases, clinician participants, a procedure for reviewing patient cases, and data 

collected) and for training machine learning models of clinician information seeking behaviors (including a description 

of data representation and data preprocessing, machine learning algorithms, and learning rate calculations).  

Methods for collecting clinician information seeking behavior 

LEMR interface 

A LEMR interface was developed using Bitnami Django stack (RRID:SCR_012855)*, Bootstrap CSS (RRID: 

SCR_016096), and High Charts (RRID: SCR_016095). The interface consists of three vertical columns: the left 

column displays temporal charts of vital sign measurements, ventilator settings, intake and output, and medication 

administrations; the middle column contains similar temporal displays of laboratory test results; and the right column 

displays free-text notes, reports, and procedures. The interface tracks what data are displayed on screen and provides 

a selector for participants to select which data are relevant. Figure 1 shows a screenshot of the interface. The source 

code for the interface is available at https://github.com/ajk77/LEMRinterface.  

Selection of patient cases 

A set of ICU patients was selected who (1) were admitted between June 2010 and May 2012 and (2) had a diagnosis 

of either acute kidney failure (AKF; ICD-9 584.9 or 584.5; 93 cases) or acute respiratory failure (ARF; ICD-9 518.81; 

85 cases). EMR data were extracted from a research database 13 and a clinical data warehouse. 14 The data were de-

identified (DE-ID Data Corp, RRID:SCR_008668) to create a limited data set that included dates and times related to 

the events.  

Clinician participants, procedure for reviewing patient cases and data collection 

The recruited participants included ICU fellows and attending clinicians from the Department of Critical Care 

Medicine at the University of Pittsburgh. Each participant was compensated $100 per hour of participation. Data 

collection occurred in a meeting room where a participant sat in front of a laptop computer that was pre-loaded with 

30 patient cases. The first four cases were common to all participants (these are called burn-in cases) and the remaining 

26 cases were different for each participant. Each participant reviewed and annotated as many cases as they could 

during one to two sessions that lasted a total of four to six hours.  

The participants reviewed and annotated the cases using the interface shown in Figure 1. The case review procedure 

included the following tasks (see Figure 2).   

 

 

 

                                                           
* RRID’s are research resource identifiers. More information at https://scicrunch.org/resources 

https://github.com/ajk77/LEMRinterface


 



Task 1: For this task a random day between day two of admission to the ICU and the day before discharge from the 

ICU was selected as the patient’s current day. All available patient data up until 8:00 am on the current day was 

displayed to the participant. Structured data were shown in graphical time series plots and free-text notes were shown 

in a separate area on the interface. The participant was instructed to “use the available information to become familiar 

with the patient case as if they are one of your own patients.”  After becoming familiar with the case, the participant 

clicked on a button to proceed to Task 2. 

Task 2: An additional day (from 8:00 am on the current day to 8:00 am on the next day) of the patient’s data was 

added to the interface. The participant was prompted with “24-hours have passed” and directed to “use the available 

information to prepare to present the case during morning rounds.” After preparation was complete, the participant 

clicked on a button to advance to Task 3. 

Task 3: On the interface, each available data item (e.g., glucose levels, insulin dosage regimen) was accompanied with 

a check box, and clicking on the area associated with data toggled the check box. The participant was directed to 

“select the information you consider pertinent when preparing to present this case at morning rounds.” The participant 

selected relevant data items by toggling the accompanying check box to the checked state. 

Information seeking behavior was collected during Task 3. Selected targets were assigned the value yes, and variables 

that were available but were not selected were assigned the value no. 

Agreement among participants 

To determine agreement among participants, we calculated intraclass correlation coefficient (ICC). 15 ICC ranges from 

0 to 1, where values less than 0.50, between 0.50 and 0.75, and between 0.75 and 0.90 are indicative of poor, moderate, 

and good reliability, respectively. 12 ICC was computed on the first four (burn-in) cases based on a single rater, 

absolute-agreement, two-way mixed-effects model (R Project for Statistical Computing, RRID:SCR_001905; CRAN, 

RRID:SCR_003005; psych package, ICC3 method). Only four cases were reviewed by all participants because we 

wanted to maximize the total number of reviewed cases. To increase the power of the ICC calculation, we aggregate 

across all targets and compute a single ICC score. While the time to task completion for the burn-in cases is longer 

because users are not yet familiar with the interface, the targets selected by the participants are presumed to be less 

affected by burn-in because data sought by clinicians is likely to be the same regardless of the time it takes them to 

navigate the interface and complete the tasks. 

Methods for training machine learning models 

Before training models of clinician information seeking behavior, the data was preprocessed into a representation that 

is suitable for machine learning. We applied and evaluated three different machine learning algorithms. Additionally, 

we calculated the learning rates for the best performing models and used them to estimate the sample sizes needed to 

train them.  

Data representation 

For each patient case, we created a training data sample that is comprised of a vector of values for predictor variables 

and is augmented with values for target variables. A predictor variable is any patient data item and includes 

observations, measurements, and actions that are recorded in the EMR. Examples of predictor variables include 

demographics, diagnosis, vital sign measurements, ventilator settings, intake and output, laboratory test results and 

medication administrations. For example, diagnosis = diabetes mellitus denotes that the predictor variable diagnosis 

Figure 2. Case review procedure showing the three tasks that are performed for each patient case. 



has the value diabetes mellitus in a particular patient, and glucose = 80, 90, 100 mg/dL denotes that the predictor 

variable glucose consists of a series of glucose levels over a period of time. A target variable (or simply target) is any 

patient data item that a clinician can potentially seek as relevant for a specific task in a specific patient case. For 

example, glucose target is a target that denotes if glucose levels are sought by a clinician. A target is a binary variable 

that is assigned the value yes if it is available for the patient case under consideration and a clinician would seek it for 

the given task and is assigned the value no if it is available but a clinician would not seek it. If the target is not measured 

in the patient’s record then it is not defined for that patient. For example, a clinician who is preparing to present at 

morning rounds a patient who has diabetes mellitus and is on insulin may seek the patient’s glucose levels and insulin 

dosing regimen; thus, in this example glucose target = yes and insulin target = yes. Consider a different patient who 

has kidney failure and glucose levels are measured but are not sought by a clinician; in this example glucose target = 

no and insulin target is not defined because it was not measured. The target data are not directly available in the 

EMR, but rather, are a function of how the EMR is used. Therefore, we developed a LEMR interface and a procedure 

for obtaining them from clinicians in a laboratory setting. 

Data preprocessing  

The predictor variables include simple atemporal variables, such as diagnosis and demographics, and complex 

variables that represent multivariate time series for laboratory test results, medication administrations, and vital sign 

measurements. We expand each complex variable into a fixed set of features as described below.  

 

Expansion of predictor variables. While some of the predictor variables are atemporal and their values for a patient 

do not change during the ICU stay, most of the variables are temporal and consist of a time-stamped sequence of 

values. 

• For each atemporal variable, such as diagnosis and demographics, we generate a single feature that is 

assigned a single value for a patient for the duration of ICU stay (e.g., diagnosis = diabetes mellitus). 

• For each medication variable, we generate several features to summarize the temporal aspects. For example, 

for a time-stamped sequence of administrations of insulin, we generate 4 features that include 1) an indicator 

of whether the patient is currently prescribed insulin, 2) the time since its first administration to the current 

time, 3) the time since its most recent administration to the current time, and 4) its dose at the most recent 

administration. 

• For each laboratory test result, we generate a rich set of features. For example, for a time-stamped sequence 

of glucose measurements, we generate 36 features that include the first glucose value during the ICU stay, 

the most recent value, the highest and lowest values until current time, the difference between the most recent 

two values, and so on. 

• For each vital sign, we generate a set of features similar to a laboratory test result. 

• The participants were represented by a set of 11 binary features. If a participant reviewed a case then the 

value of the corresponding participant feature for the patient case was assigned the value 1 and the remaining 

10 features were assigned the value 0. 

 

These variables form the basis of a vector of predictor values for each patient case. The vector of values summarizes 

the clinical evolution of the patient’s condition from the time of admission to the ICU to the current day.  

 

Target variables. Targets are binary variables indicating whether associated patient data items were sought as relevant 

or not (e.g., glucose target is yes if glucose levels were sought by a clinician). 

  

In the data representation that we have described, the temporal aspects of time series data are implicitly summarized 

in the vector of predictor values; this has the advantage that standard machine learning methods can be applied. 

 

Missing values. Missing values were imputed by two different methods. In the first method, they were imputed with 

the median. In the second method, they were imputed via linear regression and logistic regression for continuous and 

discrete predictive features, respectively. The regression model’s predictive features were all available features except 

for the feature being imputed. Both imputation methods were applied, creating two distinct data sets (a median imputed 

data set and a regression imputed data set). We train models on each data set separately and compare performance.  

Feature selection. Feature selection was necessary to reduce the dimensionality of the data and was performed in two 

steps. In the first step, for each set of features derived from a predictor variable (e.g., features such as the most recent 



value, the slope between the two most recent values, etc.), we assessed if the set is predictive of the target by itself 

using cross-validating models. Every set of features with an area under the Receiver Operator Characteristic curve 

(AUROC) of less than 0.6 was removed. In the second step, the features that remained after the first step were reduced 

further using recursive feature elimination and cross-validation (RFECV in scikit-learn, RRID:SCR_002577). The 

final set of features was used for model construction. Feature selection is target specific, so it was done separately for 

each target variable model.  

Machine learning algorithms 

Three different machine learning algorithms were applied: lasso logistic regression (LR), 16 support vector classifier 

(SV), 17 and random forest classifier (RF). 18 Models were constructed using these algorithms using leave-one-out 

cross-fold validation. The imputation and variable selection steps were performed within the cross folds. Results are 

reported as AUROC with 95% confidence intervals estimated by bootstrapping. The scikit-learn 19 

(RRID:SCR_002577) implementation of each algorithm was used.  

Learning rate calculations 

Since acquiring target values is expensive, we wanted to measure the learning rate of models to assess the number of 

training cases needed to obtain optimal model performance. To calculate the learning rate of models, we trained each 

model with varying numbers of training cases. Each model was trained with 25, 50, 75, and 100 percent of its 

respective training set, and the resulting AUROCs are reported using box and whisker plots.  

Results 

Patient cases, participants and agreement 

A total of 178 patient cases were reviewed and annotated by the clinician participants between August and October of 

2017. Of these patient cases, 52% had AKF, the average age was 60, and the median ICU day at the time of target 

selection was 7. These numbers do not include the four burn-in cases that were annotated by all participants.  

Eleven clinician participants reviewed the cases. Nine were fellows, two were faculty attendings, seven were male, 

the average years of experience since graduating from medical school was 5.5 years, and the average years of ICU 

experience was 1.8 years. 

The aggregate ICC score of the 11 participants’ selections on the first four burn-in cases is 0.40 (95% confidence 

interval 0.36 - 0.45). 

Description of data set 

The data set was assembled from 178 patient cases and 1,875 variables from 9 domains; the details on the number of 

variables in each domain are given in Table 1. Each complex variable was expanded to several features as described 

under preprocessing in the Methods section. The total number of features in the final data set was 6,935 after 

expansion. The final data matrix consisted of 178 rows (one row for each patient case), 6,935 predictor columns (one 

column for each predictor feature), and 80 target columns (one column for each target that had been assigned the value 

yes in 10 patient cases or more). Missingness in the data set was 41%. Feature selection resulted in 6,935 predictor 

features being reduced to an average of 88 predictor features. 

Model performance 

We constructed models to predict 80 distinct targets. The 80 targets were chosen such that there were adequate cases 

to train on: in at least 20 cases (of 178 cases) the target was available and in at least 10 cases where the target was 

available it was assigned the value yes. In Table 2, due to space limitations, we report the performance of 46 of the 80 

models where each of the 46 models had at least 100 cases where the target was available; the remaining 34 models 

were for targets that were available for less than 100 cases. Column 3 of Table 2 shows for each target the number of 

cases it was selected and the total number of cases in which it was available. Of the 46 models in the table, 14 had an 

AUROC of at least 0.7. Thirteen of the 34 models not shown in the table had an AUROC of at least 0.7.  

 

 



Table 1. Predictor variables and the number of features constructed from them. 

Domain Variable 

type 

Number of 

features per 

variable 

Number of 

variables 

Total possible 

number of 

features* 

Laboratory test results Ordinal 19 94 1,786 

Nominal 28 26 728 

Interval 36 519 18,684 

Ventilator settings Nominal 24 4 96 

Interval 32 5 160 

Vital sign measurements Interval 36 14 504 

Medication administration  9 796 7,164 

Procedures  4 394 1,576 

Microbiology  4 10 40 

Intake and output  14 1 14 

Demographics  7 1 7 

Participant  1 11 11 

 

*The actual number of features is smaller because many variables (e.g., rare laboratory tests) 

were not measured in this cohort of patient cases.  

 

 

Figure 3. Learning rates of models trained on different sized training sets. Each model is trained on 25, 50, 75, 

and 100 percent of relevant data sets. AUROCs were binned into four equal-interval bins by the number of 

training cases.  

 



 

Table 2. Performance of models that predict clinician information seeking behavior. To reduce clutter the word “target” is 

not included in the names of the target variables. Domain: L = laboratory test, V = vital sign, M = medication, and S = 

ventilator setting. Results are reported as AUROC with 95% confidence intervals. For each target variable, the AUROC of 

the best performing model is bolded. 

Target variable Domain Selected/ 

available 

Logistic regression 

median impute 

Random forests 

median impute 

Random forests 

regression impute 

red blood cells L 24/165 0.68 (0.55, 0.80) 0.94 (0.87, 0.99) 0.94 (0.89, 0.98) 

ventilator status S 20/131 0.54 (0.42, 0.67) 0.72 (0.60, 0.83) 0.83 (0.72, 0.92) 

pH L 46/137 0.57 (0.49, 0.66) 0.77 (0.70, 0.84) 0.71 (0.64, 0.79) 

bicarbonate (blood gases) L 11/108 0.63 (0.49, 0.77) 0.75 (0.62, 0.86) 0.61 (0.47, 0.73) 

oxygen saturation V 103/177 0.64 (0.57, 0.71) 0.74 (0.68, 0.80) 0.61 (0.53, 0.68) 

anion gap L 19/118 0.45 (0.34, 0.58) 0.69 (0.58, 0.80) 0.74 (0.63, 0.84) 

prothrombin time L 21/125 0.64 (0.52, 0.76) 0.73 (0.60, 0.86) 0.73 (0.61, 0.84) 

bilirubin total L 39/110 0.62 (0.53, 0.70) 0.73 (0.64, 0.81) 0.73 (0.64, 0.81) 

chloride L 106/178 0.63 (0.56, 0.71) 0.71 (0.64, 0.78) 0.67 (0.60, 0.74) 

lactate L 50/117 0.70 (0.61, 0.78) 0.71 (0.63, 0.79) 0.71 (0.63, 0.79) 

glucose L 114/175 0.71 (0.64, 0.78) 0.64 (0.57, 0.72) 0.67 (0.59, 0.74) 

potassium chloride M 28/136 0.52 (0.41, 0.63) 0.71 (0.62, 0.79) 0.56 (0.46, 0.66) 

heparin M 41/102 0.71 (0.62, 0.80) 0.58 (0.48, 0.67) 0.50 (0.40, 0.60) 

alkaline phosphatase L 16/109 0.53 (0.39, 0.67) 0.71 (0.61, 0.79) 0.57 (0.44, 0.70) 

fraction of inspired O2 S 99/151 0.50 (0.41, 0.59) 0.69 (0.62, 0.77) 0.68 (0.61, 0.75) 

central venous pressure V 31/111 0.62 (0.52, 0.72) 0.68 (0.58, 0.77) 0.69 (0.59, 0.78) 

magnesium L 74/173 0.58 (0.51, 0.65) 0.69 (0.62, 0.75) 0.62 (0.55, 0.69) 

blood urea nitrogen L 114/177 0.62 (0.54, 0.70) 0.68 (0.60, 0.75) 0.60 (0.53, 0.68) 

respiratory rate V 121/178 0.58 (0.51, 0.66) 0.56 (0.48, 0.64) 0.68 (0.61, 0.75) 

calcium L 41/163 0.65 (0.57, 0.73) 0.68 (0.59, 0.76) 0.67 (0.59, 0.75) 

partial thromboplastin time L 21/108 0.68 (0.55, 0.79) 0.64 (0.52, 0.77) 0.64 (0.55, 0.73) 

hematocrit L 11/166 0.61 (0.35, 0.85) 0.59 (0.40, 0.76) 0.68 (0.46, 0.88) 

neutrophils L 31/156 0.49 (0.38, 0.59) 0.67 (0.57, 0.78) 0.65 (0.56, 0.74) 

partial pressure of CO2 L 31/138 0.65 (0.55, 0.74) 0.67 (0.58, 0.75) 0.62 (0.53, 0.72) 

temperature V 144/178 0.51 (0.42, 0.61) 0.61 (0.52, 0.71) 0.67 (0.58, 0.75) 

ventilator mode S 72/148 0.66 (0.59, 0.74) 0.67 (0.59, 0.74) 0.66 (0.59, 0.73) 

intake and output V 81/178 0.64 (0.57, 0.71) 0.66 (0.59, 0.73) 0.55 (0.47, 0.62) 

blood pressure V 151/178 0.47 (0.36, 0.58) 0.65 (0.56, 0.74) 0.53 (0.43, 0.63) 

INR L 74/125 0.65 (0.57, 0.73) 0.59 (0.51, 0.67) 0.63 (0.54, 0.71) 

creatinine L 132/177 0.62 (0.55, 0.71) 0.64 (0.56, 0.72) 0.65 (0.57, 0.73) 

aspartate aminotransferase L 28/113 0.65 (0.54, 0.75) 0.64 (0.55, 0.74) 0.52 (0.41, 0.63) 

alanine aminotransferase L 26/111 0.57 (0.46, 0.68) 0.65 (0.56, 0.74) 0.50 (0.40, 0.60) 

platelets L 125/166 0.65 (0.57, 0.73) 0.58 (0.50, 0.66) 0.56 (0.48, 0.64) 

phosphate L 69/170 0.53 (0.45, 0.61) 0.65 (0.58, 0.72) 0.56 (0.48, 0.63) 

potassium L 121/178 0.64 (0.57, 0.71) 0.43 (0.36, 0.50) 0.56 (0.48, 0.65) 

white blood cells L 141/166 0.60 (0.50, 0.69) 0.63 (0.55, 0.72) 0.64 (0.57, 0.72) 

sodium L 128/178 0.47 (0.39, 0.55) 0.64 (0.56, 0.72) 0.58 (0.50, 0.66) 

bicarbonate (chemistry) L 104/178 0.58 (0.51, 0.65) 0.64 (0.57, 0.71) 0.62 (0.54, 0.69) 

albumin L 21/114 0.56 (0.44, 0.68) 0.56 (0.45, 0.67) 0.64 (0.53, 0.76) 

partial pressure of O2 L 30/137 0.62 (0.52, 0.71) 0.64 (0.54, 0.74) 0.64 (0.55, 0.72) 

hemoglobin L 130/166 0.63 (0.55, 0.72) 0.59 (0.51, 0.67) 0.59 (0.51, 0.67) 

heart rate V 152/178 0.48 (0.39, 0.57) 0.62 (0.52, 0.73) 0.48 (0.38, 0.58) 

ionized calcium L 30/132 0.62 (0.52, 0.71) 0.59 (0.50, 0.68) 0.55 (0.45, 0.65) 

glomerular filtration rate L 19/166 0.47 (0.36, 0.58) 0.61 (0.50, 0.72) 0.60 (0.48, 0.72) 

ventilator tube status S 45/130 0.45 (0.36, 0.55) 0.60 (0.50, 0.69) 0.44 (0.35, 0.52) 

sodium chloride 0.9% M 69/154 0.56 (0.49, 0.63) 0.49 (0.42, 0.57) 0.48 (0.40, 0.56) 

Average 
  

0.59 0.65 0.62 

Average of best (bolded AUROCs) 0.68 

 



Learning rates 

Learning rate calculations were performed by training all models in Table 2 at four training set sizes: 25, 50, 75, and 

100 percent of each model’s respective training set. The median AUROCs for the varying training set sizes are shown 

in Figure 3. Overall, the median AUROC increases as the number of training cases increases. 

Discussion 

We developed models to predict clinician EMR information seeking behavior from a set of ICU patient cases that 

were reviewed by clinicians who selected targets. The targets are variables such as a laboratory test value or a vital 

sign measurement that are available in the patient case of interest and are selected as relevant if the reviewing clinician 

considered them to be pertinent information when preparing to present that case for morning rounds. In obtaining data 

for training models, we focused on the context of clinicians (user), preparing for morning rounds (task), for patients 

with AKF and ARF (cases). 

The ICC results showed poor agreement across participants regarding which patient data were relevant when rounding 

for a patient case. Some of the variation may be due to our intentional choice of a broad task that is subject to 

interpretation. We tried to standardize the task by clearly and consistently explaining the task to each participant. High 

variability between clinicians makes learning information seeking behavior more difficult. We plan to purse different 

directions that might lead to improved performance including (1) additional predictor variables (e.g., from natural 

language processing of free text), (2) more samples, (3) hierarchical modeling to leverage across contexts, from the 

most general to the most specialized, and (4) clinician-specific models that have the potential to overcome clinician 

variability as indicated by the low ICC values. 

Sufficient sample sizes were available for building models to predict 80 distinct targets and, despite relatively small 

training sets, AUROC performance was greater than 0.70 for more than 30% of the models. These encouraging results 

are bolstered by the learning rate results. All but one model with at least 120 training samples had an AUROC greater 

than 0.60, and most models showed an upward trend in AUROC values as the number of training samples increased.  

Superior performance with practically attainable numbers of training samples is important because manual collection 

of clinician information seeking behavior is laborious and time consuming, and thus, it is unlikely to scale well in 

obtaining training data for building predictive models across many different contexts. This limitation will be addressed 

in the future through the use of automatic methods of observing clinician information seeking behavior. For example, 

we could imitate how other researchers capture clinician behaviors without interrupting workflow, 20 use EHR meta-

data, such as page visits and mouse clicks, or use newer technologies, such as eye-tracking. 21  

Open questions about the effectiveness of a LEMR system remain to be studied. We do not know the AUROC 

performance necessary for a clinician to trust models of their information seeking behavior. Future work is needed to 

determine the degree to which a LEMR system should favor precision (i.e., highlight only the patient data that are 

definitely relevant) versus recall (i.e., highlight any patient data that are potentially relevant); it could vary by the 

target and the context. Also, knowledge of clinical and cognitive-behavior can be leveraged to determine how and 

when highlighting patient data will be most effective. 22 

Conclusion 

The results reported here contribute to the long-term development of a LEMR system that uses models to predict 

clinician information seeking behavior, dynamically adapts the LEMR interface to highlight relevant patient data, and 

thus provides concise, context sensitive data. We developed a data set from which we built models with good 

performance in predicting clinician information seeking behavior. As a next step, we plan to apply these models to a 

new set of patient cases and evaluate the quality and usefulness of the predictions in a new study. In the longer term, 

we plan to explore alternative methods of capturing targets that are more efficient and scale to larger data sets for 

building models. The LEMR system, we hope, will improve EMR usability by intelligently drawing the clinician’s 

attention to the right data, at the right time. 
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