
Deep Multiple Kernel Learning

Eric V. Strobl & Shyam Visweswaran
Department of Biomedical Informatics

University of Pittsburgh
Pittsburgh, USA

evs17@pitt.edu; shv3@pitt.edu

Abstract—Deep learning methods have predominantly been
applied to large artificial neural networks. Despite their state-of-
the-art performance, these large networks typically do not
generalize well to datasets with limited sample sizes. In this
paper, we take a different approach by learning multiple layers
of kernels. We combine kernels at each layer and then optimize
over an estimate of the support vector machine leave-one-out
error rather than the dual objective function. Our experiments
on a variety of datasets show that each layer successively
increases performance with only a few base kernels.

Keywords—Deep Learning; Multiple Kernel Learning;
Kernels; Support Vector Machine.

I. INTRODUCTION

Deep learning methods construct new features by
transforming the input data through multiple layers of
nonlinear processing. This has conventionally been
accomplished by training a large artificial neural network with
several hidden layers. However, the method has been limited
to datasets with very large sample sizes such as the MNIST
dataset which contains 60,000 training samples. More
recently, there has been a drive to apply deep learning to
datasets with more limited sample sizes as typical in many
real-world situations.

Kernel methods have been particularly successful on a
variety of sample sizes because they can enable a classifier to
learn a complex decision boundary with only a few parameters
by projecting the data onto a high-dimensional reproducing
kernel Hilbert space. As a result, several researchers have
investigated whether kernel learning can be modified for deep
learning. Cho et al. (2009) described the first approach by
optimizing an arc-cosine kernel, a function that mimics the
massive random projections of an infinite neural network, and
successfully integrated the kernel in a deep architecture.
However, the method did not allow easily tunable parameters
beyond the first layer. Subsequently, Zhuang et al. (2011)
proposed to tune a combination of kernels but had trouble
optimizing the network beyond two layers. Moreover, the
second layer only consisted of a single Gaussian radial basis
function (RBF) kernel.

In this paper, we improve on the previous methods by
contributing to several key issues in deep kernel learning. The
rest of the paper is structured as follows. First, we describe
related work and provide some background on how kernels

can be constructed from other kernels. Next, we show that a
deep architecture that incorporates multiple kernels can
substantially increase the “richness” of representations
compared to a shallow architecture. Then, we prove that the
upper bound of the generalization error for deep multiple
kernels can be significantly less than the upper bound for deep
feed-forward networks under some conditions. We then
modify the optimization method by tuning over an estimate of
the leave-one-out error rather than the dual objective function.
We finally show that the proposed method increases test
accuracy on datasets with sample sizes as low as the upper
tens.

II. RELATED WORK

Several investigators have tried to extend kernels to deep
learning. Cho et al. (2009) described the first approach by
developing an arc-cosine kernel that mimics the projections of
a randomly initialized neural network. The kernel admits a
normalized kernel and can thus be stacked in multiple layers.
Successively combining these kernels can lead to increased
performance in some datasets. Nonetheless, arc-cosine kernels
do not easily admit hyper-parameters beyond the first layer,
since the kernel projects the data to an infinite-dimensional
reproducing kernel Hilbert space.

Zhuang et al. (2011) attempted to introduce tunable hyper-
parameters by borrowing ideas from multiple kernel learning.
The authors proposed to successively combine multiple
kernels in multiple layers, where each kernel has an associated
weight value. However, the authors had trouble optimizing the
network beyond a second layer which only consisted of a
single Gaussian RBF kernel. In this paper, we improve on the
multiple kernel learning approach by successfully optimizing
multiple layers each with multiple kernels.

III. BACKGROUND

Kernels compute a similarity function between two vector
inputs �, � ∈ ℝ�. A kernel can be described by the dot product
of its two basis functions.

�(�)(�, �) = 	(�)(�) · 	(�)(�),
where �(�)(�, �) represents a first layer kernel. One way to
view a kernel within a kernel is the respective basis functions
within the basis functions for an
 number of layers:

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICMLA.2013.84

414

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICMLA.2013.84

414

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICMLA.2013.84

414

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICMLA.2013.84

414

�(�)(�, �) = 	(�) �… 	(�)(�
� · 	(�) �… 	(�)(�
�.
Note that the linear kernel does not change throughout the
layers.

�(�)(�, �) = 	(�) �… 	(�)(�)� · 	(�) �… 	(�)(�)� = 	(�)(�) · 	(�)(�) = � · �.
In the case of the polynomial kernel, we observe a polynomial
of higher order:

�(�)(�, �) = (�(� · �) + �)�
�(�)(�, �) = �� ��(�)(�, �)� + ���,

where �, � and � denote the free parameters of the polynomial
kernel. From [1], the Gaussian RBF kernel can be
approximated as:

�(�)(�, �) ≈ �(�)(�, �) = 	(�) �	(�)(�)� · 	(�) �	(�)(�)� = ����(���(�·�)).
IV. COMPLEXITY ANALYSIS

Kernels are designed to create different representations of
the data using basis functions. If we stack two kernels of
different types, we can often develop a representation that is
different from either alone. Moreover, we can obtain “richer”
representations that cannot be well-approximated by a single
kernel, when we combine multiple kernels within a kernel
such as by taking their sum.

More formally, we base an analysis of the
richness/complexity of a kernel via its pseudo-dimension and
then more specifically by the upper bound of the second-order
Rademacher chaos complexity ��� as defined in [3]. We also
introduce the following new definition:

Definition 1. A deep multiple kernel architecture is an
-level
multiple kernel architecture with ℎ sets of � kernels at each
layer:

�(�) = !"�,�(�)��,�(�)#"�,�(���)��,�(���) + ⋯
 + ⋯ "%,&(�) �%,&(�) (…)',
where �%,&(�) represents the �th kernel in set ℎ at layer
 with an
associated weight parameter "%,&(�) , and �(�) represents the
single combined kernel at layer
. The term *(�) is used as
short-hand to denote all kernels in layer
. The architecture is
depicted in Figure 1.

Theorem 1. Let � be a finite number of base kernels, *(�)
the single layer kernel functions, and *(�-�) the multi-layer
kernel functions. Then:

���#*(�)
 ≤ ���#*(�-�)
.

Proof. The tunable weights of the first and last layer can be
represented as two second-order tensors of non-negative ℝ%×&. Assuming the same architecture for each layer
excluding the first and last, the number of weights can be
represented as a fourth-order tensor of non-negative

ℝ(���)×%×%×&. The total number of free weights in *(�-�) is
thus (
 − 2)ℎ�� + 2ℎ�. The pseudo-dimension of *(�-�)
can now be stated as 0* ≤ (
 − 2)ℎ�� + 2ℎ�. On the other
hand, the pseudo-dimension of *(�) for the single layer
kernels can be stated as 0* ≤ � (Lemma 7, [4]). We can now
derive the upper bound of the Rademacher chaos complexity
for the single and multi-layer cases from Theorem 3, [3]:

���#*(�)
 ≤ (192� + 1)3�����#*(�-�)
 ≤ (192� + 1)3�#(
 − 2)ℎ�� + 2ℎ�
,
where � is a natural constant, and 3 ≔ sup�∈*,�∈5 6�(�, �).
Thus, ���#*(�)
 ≤ ���#*(�-�)
. □
Remark. The looser upper bound with a deep compared to a
shallow multiple kernel architecture suggests that multiple
layers can increase the richness of the kernel representations.

V. COMPARISON TO FEED-FORWARD NETWORKS

 The increased richness of the kernels can increase the risk
of over-fitting. However, we can prove that the upper bound
of the generalization error for deep multiple kernels is
significantly less than the upper bound for deep feedforward
networks under some conditions.
Definition 2. We define a large margin feed-forward network
in which a large margin classifier is applied to the last hidden
layer of the network. We can thus equivalently represent this
feed-forward network in kernel form. We define the large
margin feed-forward network for an instance as 8(�:) and its
kernel as: �(8(�:), 8(�:;)) = 8(�:) ∙ 8(�:;).
Theorem 2. The ��� upper bound of the deep multiple kernel is
proportional to 3 with the ��� upper bound of the large margin
feed-forward network kernel when:

0 = >(
 − 2)ℎ�� + 2ℎ�(
 − 1) ,
where 0 represents the dimensionality of the data and the
number of hidden nodes at each layer.

Proof. Assuming we adopt the same number of hidden nodes
as the dimensionality of the data, the weights of the large

Fig 1. Depiction of a deep multiple kernel architecture. Lines represent the
 weights for each set, "%(�).

415415415415

margin feed-forward network can be represented as a third-
order tensor, where the number of free parameters is 0�(
 −1). We equate the number of free parameters from the feed-
forward network kernel to the number of free parameters of a
deep multiple kernel as derived in Theorem 1 assuming the
same number of layers. 0�(
 − 1) = (
 − 2)ℎ�� + 2ℎ�,

0 = >(
 − 2)ℎ�� + 2ℎ�(
 − 1) .
In this case, both the large margin feed-forward network kernel
and the deep multiple kernel have the same pseudo-dimension
upper bound. Hence, it follows that both have a
Rademacher chaos complexity upper bound proportional to 3
from Theorem 1, [3]. □
Remark. Theorem 2 implies that a deep multiple kernel can
have a lower generalization bound than a large margin feed-
forward network kernel, if we select a small number of base
kernels and sets of base kernels at each layer. This is in
contrast to the large feed-forward networks traditionally used
in deep learning.

VI. OPTIMIZATION METHOD
The classifier given by an SVM is ?@A(∑ �:C�:�D(�:, �) + E)�:F� . Ideally, we would like to

choose the coefficients GC to minimize an estimate of the true
risk of the SVM. Traditionally, this has been solved by
maximizing the margin through the gradient of the dual
objective function with respect to the kernel hyper-parameters.
However, deep learning schemes present a risk of over-fitting
with increased richness of the representations. Thus, it is
particularly important to seek a tight bound of the leave-one-
out error. In this paper, we decided to use the span bound,
since it has shown promising results in single layer multiple
kernel learning [5]. Assuming that the set of support vectors
remains the same throughout the leave-one-out procedure, the
span bound can be stated as:

H((�, �), … , (�, �)) ≤ I J#�KCLK� − 1
 ≕ NOKP�,�
KF�

where H is the leave-one-out error, and LK is the distance
between the point 	�Q(�K) and the set RK = !∑ S:	�Q(�:):TK,UVW-C X ∑ S: = 1:TK '.

 We now modify the arguments presented in Liu et al.
(2011) for deep multiple kernel learning. The estimate of the
span bound requires a step function that is not differentiable.
Therefore, we can smooth the step function instead by using a
contracting function J(�) = (1 + exp(−Y� + E))��, where Y
and 0 are non-negative weights. Similar to [6], we chose Y = 5
and 0 = 0. Chapelle et al. (2002) showed that LK̅� can then be
smoothed by adding a regularization term:

LK̅� = min],∑ ^VF� _	�Q#�K
 − ` I S:
�

:TK
	�Q(�:)_ + ` I 1�:C S:�

�
:TK

.
 Now, denote the set of support vectors sv = {�|�:C > 0, b =
1, … ,
}, *c Ddf = g*Ddf hhj 0k and

l*c odfW
lDo = ql*c odflDo rrj 0t. With

these new notations, we can rewrite LK̅� as 1/(*c Ddf + y)KK�� −yKK, where y is a diagonal matrix with elements [y]:: = −`/�:C and [y]�df��,�df�� = 0.

Theorem 3. Let � be a diagonal matrix with elements [�]:: = −`/(���VC)� and [�]�df��,�df�� = 0. We also define �� as the
inverse of *c Ddfwith the last row and column removed. Then,

�LK̅��"� = 1�KK�� ���� ��*c �dfC
�"� + ��� ����KK − (��)KK,

where � = *c Ddf + y, ��� = 0b�@ �#����,…,����
j� and � = 0b�@(����� l*odflDo ���G��C ; 0). The proof can be found in
[5]. □
 We calculate

l*c QdflDo by performing the standard chain rule,
where each set is normalized to a unit hypersphere:

*%(�)(�, �) ← *%(�)(�, �)
�*%(�)(�, �)*%(�)(�, �).

Normalization is critical to prevent kernel values from growing
out of control. We can now create an algorithm with the
derivative of �NOKP� �"⁄ by alternating between (1) fixing �
and solving for ", and (2) fixing " and solving for �.

Algorithm: Adaptive Span Deep Multiple Kernel Learning
Algorithm
1. Input: "�� and �� ∈ [0,1] for every kernel �
2. for � = 1,2,… do
3. solve the SVM problem with �(�)("�)
4. for � = 1,2,… do
5. "���� ← "�� − �� lj����lDo
6. end for
7. if stopping criterion then break
8. end for

VII. EXPERIMENTS

Multiple kernel learning algorithms have traditionally used
RBF and polynomial kernels. However, we chose not to use
these kernels, since our objective based on the proposed
theorems suggests that we should try to maximize the upper
bound of the pseudo-dimension of the final kernel to increase
its richness with each successive layer. In fact, it can be shown
that the sum of RBF kernels has a pseudo-dimension of 1 from
Lemma 2, [3]. Hence, we use four unique base kernels: a linear
kernel, an RBF kernel with � = 1, a sigmoid kernel with � = −1 × 10�� and � = 1, and a polynomial kernel with

416416416416

� = 1, � = 1, � = 2. We used one set of kernels for each
layer making the 3-layer Radamacher upper bound of the
architecture proportional to a large margin feed-forward
network kernel with 0 = √6 according to Theorem 2. We
initialize all "�(�) to �&. Moreover, we use gradient descent on
the span bound for 500 iterations for both shallow and deep
multiple kernel architectures with � fixed to 10 on 22
standardized UCI datasets. Datasets were randomized and split
in half, while instances with missing values were excluded.

We show increased accuracy with the incorporation of
each successive layer by optimizing over the dual objective
and span bound. There was a larger increase in accuracy with
the addition of the second layer than with the addition of the
third. However, the third layer did result in small increases in
accuracy such as the 2% increase seen in the Ionosphere
dataset with the span bound.

The proposed method increases accuracy on a range of
sample sizes. The experimental results are thus consistent with
the theorems proposed in section V. Namely, we can avoid
over-fitting by choosing a small number of base kernels and
sets of kernels at each layer. Thus, similar to single layer
kernels, the key to increased accuracy may be to choose a few
appropriate kernel representations. At the very least, we can
choose a set of appropriate single layer kernels and then the
deep architecture can help boost accuracy beyond the single
layer.

The method of optimizing over the span bound generally
performs better than optimizing over the dual objective
function. The performance difference is significant as the 2-
layer optimized over the span outperforms the 3-layer
optimized over the dual. These results are consistent with the

conclusions in Section VI that using a tighter upper bound on
the generalization performance can help offset the increased
kernel complexity with each subsequent layer.

VIII. CONCLUSION
 We have developed a new method to successfully optimize
multiple, complete layers of kernels while increasing
generalization performance on a variety of datasets. The
method works by combining multiple kernels within each
layer to increase the richness of representations and then by
optimizing over a tight upper bound of the leave-one-out error.

ACKNOWLEDGEMENTS

This research was funded by the NLM/NIH grant T15
LM007059-24 to the University of Pittsburgh Biomedical
Informatics Training Program and the NIGMS/NIH grant T32
GM008208 to the University of Pittsburgh Medical Scientist
Training Program.

REFERENCES

[1] Y. Cho and S.K. Saul, “Kernel methods for deep learning,” Advances in
Neural Information Processing Systems, vol. 22, pp. 342-350, 2009.

[2] J. Zhuang, I.W. Tsang, and S.C.H. Choi, “Two-layer multiple kernel
learning,” in Proceedings of International Conference on Artificial
Intelligence and Statistics, 2011.

[3] Y. Ying and C. Campbell, “Rademacher chaos complexities for learning
the kernel,” Neural Computation, vol. 22, pp. 2858-2886, 2010.

[4] N. Srebro and S. Ben-David, “Learning bounds for support vector
machines with learned kernels,” in Proceedings of COLT, 2006.

[5] Y. Liu, S. Liao, and Y. Hou, “Learning kernels with upper bounds of
leave-one-out error,” in Proceedings of the 20th ACM Conference on
Information and Knowledge Management, pp. 2205–2208, 2011.

[6] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. “Choosing
multiple parameters for support vector machines,” Machine Learning,
vol. 46, pp. 131–159, 2002.

Dual Span
Dataset n/d n 1-Layer Zhuang 2-Layer 3-Layer 1-Layer 2-Layer 3-Layer

Arcene 0.01 100 83.00 80.00 83.00 83.00 84.00 83.00 83.00
Musk1 1.43 238 94.12 94.96 94.96 95.38 94.96 95.80 95.80
Sonar 1.73 104 89.42 88.46 89.42 89.42 88.46 90.38 89.42
Indian Liver 2.90 290 65.52 68.97 66.55 67.24 68.38 70.34 70.69
Zoo 3.19 51 92.16 92.16 92.16 92.16 94.12 92.16 92.16
Ionosphere 5.18 176 90.91 91.48 93.75 94.32 90.91 92.61 94.89
Post-Operative 5.38 43 55.81 65.12 55.81 60.47 55.81 55.81 55.81
Audiology 7.71 54 56.60 54.72 54.72 50.94 52.83 54.72 54.72
Glass2 9.00 81 69.14 70.37 67.90 70.37 71.60 75.31 75.31
Corral 10.67 64 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cleve 12.17 146 73.29 73.97 74.66 74.66 70.55 73.29 73.29
Congress 13.63 218 94.95 94.04 94.95 94.95 94.04 94.95 94.95
Credit 21.80 327 81.96 83.49 82.26 84.40 84.40 84.40 84.40
Australian 24.64 345 80.29 81.45 82.03 81.45 82.32 82.32 82.32
German 25.00 500 69.60 70.80 71.20 69.40 68.40 69.60 69.40
3of9 28.44 256 99.61 98.83 99.22 99.22 98.83 99.22 99.22
Liver 28.67 173 67.05 68.21 70.52 71.68 70.52 71.10 70.52
Monk3 36.00 216 64.35 64.81 64.81 69.44 68.98 69.44 69.44
Breast Cancer 38.11 343 97.67 98.54 97.96 98.54 97.67 97.96 97.96
Pima Indians 48.00 384 70.57 76.56 77.10 76.82 78.65 77.10 77.60
Tic-Tac-Toe 53.22 479 95.40 92.07 92.90 91.44 87.89 92.90 92.90
Balance Scale 72.00 288 98.61 98.26 98.61 98.61 99.65 98.96 98.96
Rank 3.18 2.73 2.50 2.32 2.64 1.91 1.82
p-value 0.022 0.018 0.083 0.340 0.047 1.000

 Table 1. Percent accuracies after optimizing over the dual objective function or span bound. n/d stands for training sample size over
 dimensions; Zhuang for Zhuang et al. (2011). The p-values were obtained by comparing against span 3-layer by paired Wilcoxon
 signed-rank test.

417417417417

