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Abstract—Deep learning methods have predominantly been 
applied to large artificial neural networks. Despite their state-of-
the-art performance, these large networks typically do not 
generalize well to datasets with limited sample sizes. In this 
paper, we take a different approach by learning multiple layers 
of kernels. We combine kernels at each layer and then optimize 
over an estimate of the support vector machine leave-one-out 
error rather than the dual objective function. Our experiments 
on a variety of datasets show that each layer successively 
increases performance with only a few base kernels.  

Keywords—Deep Learning; Multiple Kernel Learning; 
Kernels; Support Vector Machine. 

I. INTRODUCTION

Deep learning methods construct new features by 
transforming the input data through multiple layers of 
nonlinear processing. This has conventionally been 
accomplished by training a large artificial neural network with 
several hidden layers. However, the method has been limited 
to datasets with very large sample sizes such as the MNIST 
dataset which contains 60,000 training samples. More 
recently, there has been a drive to apply deep learning to 
datasets with more limited sample sizes as typical in many 
real-world situations. 

Kernel methods have been particularly successful on a
variety of sample sizes because they can enable a classifier to 
learn a complex decision boundary with only a few parameters 
by projecting the data onto a high-dimensional reproducing 
kernel Hilbert space. As a result, several researchers have 
investigated whether kernel learning can be modified for deep 
learning. Cho et al. (2009) described the first approach by 
optimizing an arc-cosine kernel, a function that mimics the 
massive random projections of an infinite neural network, and 
successfully integrated the kernel in a deep architecture. 
However, the method did not allow easily tunable parameters 
beyond the first layer. Subsequently, Zhuang et al. (2011)
proposed to tune a combination of kernels but had trouble 
optimizing the network beyond two layers. Moreover, the 
second layer only consisted of a single Gaussian radial basis 
function (RBF) kernel.  

In this paper, we improve on the previous methods by 
contributing to several key issues in deep kernel learning. The 
rest of the paper is structured as follows. First, we describe 
related work and provide some background on how kernels 

can be constructed from other kernels. Next, we show that a 
deep architecture that incorporates multiple kernels can 
substantially increase the “richness” of representations 
compared to a shallow architecture. Then, we prove that the 
upper bound of the generalization error for deep multiple 
kernels can be significantly less than the upper bound for deep 
feed-forward networks under some conditions. We then 
modify the optimization method by tuning over an estimate of 
the leave-one-out error rather than the dual objective function. 
We finally show that the proposed method increases test 
accuracy on datasets with sample sizes as low as the upper 
tens. 

II. RELATED WORK

Several investigators have tried to extend kernels to deep 
learning. Cho et al. (2009) described the first approach by 
developing an arc-cosine kernel that mimics the projections of 
a randomly initialized neural network. The kernel admits a 
normalized kernel and can thus be stacked in multiple layers. 
Successively combining these kernels can lead to increased 
performance in some datasets. Nonetheless, arc-cosine kernels 
do not easily admit hyper-parameters beyond the first layer, 
since the kernel projects the data to an infinite-dimensional 
reproducing kernel Hilbert space.  

Zhuang et al. (2011) attempted to introduce tunable hyper-
parameters by borrowing ideas from multiple kernel learning. 
The authors proposed to successively combine multiple 
kernels in multiple layers, where each kernel has an associated 
weight value. However, the authors had trouble optimizing the 
network beyond a second layer which only consisted of a 
single Gaussian RBF kernel. In this paper, we improve on the 
multiple kernel learning approach by successfully optimizing 
multiple layers each with multiple kernels. 

III. BACKGROUND

Kernels compute a similarity function between two vector 
inputs �, � ∈ ℝ�. A kernel can be described by the dot product 
of its two basis functions. 

�(�)(�, �) =  	(�)(�) · 	(�)(�),
where �(�)(�, �) represents a first layer kernel. One way to 
view a kernel within a kernel is the respective basis functions 
within the basis functions for an 
 number of layers: 
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�(�)(�, �) =  	(�) �… 	(�)(�
� · 	(�) �… 	(�)(�
�.
Note that the linear kernel does not change throughout the 
layers.  

�(�)(�, �) = 	(�) �… 	(�)(�)� · 	(�) �… 	(�)(�)�   =  	(�)(�) · 	(�)(�) = � · �.
In the case of the polynomial kernel, we observe a polynomial 
of higher order: 

�(�)(�, �) = (�(� · �) + �)�
�(�)(�, �) = �� ��(�)(�, �)� + ���,

where �, � and � denote the free parameters of the polynomial 
kernel. From [1], the Gaussian RBF kernel can be 
approximated as: 

�(�)(�, �) ≈ �(�)(�, �)  = 	(�) �	(�)(�)� · 	(�) �	(�)(�)�                =  ����(���(�·�)). 
IV. COMPLEXITY ANALYSIS

Kernels are designed to create different representations of 
the data using basis functions. If we stack two kernels of 
different types, we can often develop a representation that is 
different from either alone. Moreover, we can obtain “richer”
representations that cannot be well-approximated by a single 
kernel, when we combine multiple kernels within a kernel 
such as by taking their sum.  

More formally, we base an analysis of the 
richness/complexity of a kernel via its pseudo-dimension and 
then more specifically by the upper bound of the second-order 
Rademacher chaos complexity ��� as defined in [3]. We also 
introduce the following new definition: 

Definition 1. A deep multiple kernel architecture is an 
-level 
multiple kernel architecture with ℎ sets of � kernels at each 
layer: 

�(�) = !"�,�(�)��,�(�)#"�,�(���)��,�(���) + ⋯ 
 + ⋯ "%,&(�) �%,&(�) (… )',
where �%,&(�)  represents the �th kernel in set ℎ at layer 
 with an
associated weight parameter "%,&(�) , and �(�) represents the 
single combined kernel at layer 
. The term *(�) is used as 
short-hand to denote all kernels in layer 
. The architecture is
depicted in Figure 1.   

Theorem 1. Let � be a finite number of base kernels, *(�)
the single layer kernel functions, and *(�-�) the multi-layer 
kernel functions. Then: 

���#*(�)
 ≤ ���#*(�-�)
.

Proof. The tunable weights of the first and last layer can be 
represented as two second-order tensors of non-negative ℝ%×&. Assuming the same architecture for each layer 
excluding the first and last, the number of weights can be 
represented as a fourth-order tensor of non-negative 

ℝ(���)×%×%×&. The total number of free weights in *(�-�) is 
thus (
 − 2)ℎ�� + 2ℎ�. The pseudo-dimension of *(�-�)
can now be stated as 0* ≤ (
 − 2)ℎ�� + 2ℎ�. On the other 
hand, the pseudo-dimension of *(�) for the single layer 
kernels can be stated as 0* ≤ � (Lemma 7, [4]). We can now 
derive the upper bound of the Rademacher chaos complexity 
for the single and multi-layer cases from Theorem 3, [3]: 

���#*(�)
 ≤ (192� + 1)3�����#*(�-�)
 ≤ (192� + 1)3�#(
 − 2)ℎ�� + 2ℎ�
,
where � is a natural constant, and 3 ≔ sup�∈*,�∈5 6�(�, �). 
Thus, ���#*(�)
 ≤ ���#*(�-�)
. □
Remark. The looser upper bound with a deep compared to a
shallow multiple kernel architecture suggests that multiple 
layers can increase the richness of the kernel representations. 

V. COMPARISON TO FEED-FORWARD NETWORKS

 The increased richness of the kernels can increase the risk 
of over-fitting. However, we can prove that the upper bound 
of the generalization error for deep multiple kernels is 
significantly less than the upper bound for deep feedforward 
networks under some conditions.  
Definition 2. We define a large margin feed-forward network
in which a large margin classifier is applied to the last hidden 
layer of the network. We can thus equivalently represent this
feed-forward network in kernel form. We define the large 
margin feed-forward network for an instance as 8(�:) and its 
kernel as: �(8(�:), 8(�:;)) = 8(�:) ∙ 8(�:;).
Theorem 2. The ��� upper bound of the deep multiple kernel is 
proportional to 3 with the ��� upper bound of the large margin 
feed-forward network kernel when:

0 = >(
 − 2)ℎ�� + 2ℎ�(
 − 1)  ,
where 0 represents the dimensionality of the data and the 
number of hidden nodes at each layer. 

Proof. Assuming we adopt the same number of hidden nodes
as the dimensionality of the data, the weights of the large

Fig 1. Depiction of a deep multiple kernel architecture. Lines represent the 
          weights for each set, "%(�).
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margin feed-forward network can be represented as a third-
order tensor, where the number of free parameters is 0�(
 −1). We equate the number of free parameters from the feed-
forward network kernel to the number of free parameters of a 
deep multiple kernel as derived in Theorem 1 assuming the 
same number of layers. 0�(
 − 1) =  (
 − 2)ℎ�� + 2ℎ�,

0 = >(
 − 2)ℎ�� + 2ℎ�(
 − 1) . 
In this case, both the large margin feed-forward network kernel 
and the deep multiple kernel have the same pseudo-dimension 
upper bound. Hence, it follows that both  have a 
Rademacher chaos complexity upper bound proportional to 3
from Theorem 1, [3]. □  
Remark. Theorem 2 implies that a deep multiple kernel can 
have a lower generalization bound than a large margin feed-
forward network kernel, if we select a small number of base 
kernels and sets of base kernels at each layer. This is in 
contrast to the large feed-forward networks traditionally used 
in deep learning.

VI. OPTIMIZATION METHOD  
The classifier given by an SVM is ?@A(∑ �:C�:�D(�:, �) + E)�:F� . Ideally, we would like to 

choose the coefficients GC to minimize an estimate of the true 
risk of the SVM. Traditionally, this has been solved by 
maximizing the margin through the gradient of the dual 
objective function with respect to the kernel hyper-parameters.
However, deep learning schemes present a risk of over-fitting 
with increased richness of the representations. Thus, it is 
particularly important to seek a tight bound of the leave-one-
out error. In this paper, we decided to use the span bound,
since it has shown promising results in single layer multiple 
kernel learning [5]. Assuming that the set of support vectors 
remains the same throughout the leave-one-out procedure, the 
span bound can be stated as: 

H((�, �), … , (�, �)) ≤ I J#�KCLK� − 1
 ≕ NOKP�,�
KF�

where H is the leave-one-out error, and LK is the distance 
between the point 	�Q(�K) and the set RK = !∑ S:	�Q(�:):TK,UVW-C X ∑ S: = 1:TK '. 

 We now modify the arguments presented in Liu et al. 
(2011) for deep multiple kernel learning. The estimate of the 
span bound requires a step function that is not differentiable. 
Therefore, we can smooth the step function instead by using a 
contracting function J(�) = (1 + exp(−Y� + E))��, where Y
and 0 are non-negative weights. Similar to [6], we chose Y = 5
and 0 = 0. Chapelle et al. (2002) showed that LK̅� can then be 
smoothed by adding a regularization term: 

LK̅� =  min],∑ ^VF� _	�Q#�K
 − ` I S:
�

:TK
	�Q(�:)_ + ` I 1�:C S:�

�
:TK

.
 Now, denote the set of support vectors sv = {�|�:C > 0, b =
1, … , 
}, *c Ddf = g*Ddf hhj 0k and 

l*c odfW
lDo = ql*c odflDo rrj 0t. With 

these new notations, we can rewrite LK̅� as 1/(*c Ddf + y)KK�� −yKK, where y is a diagonal matrix with elements [y]:: = −`/�:C and [y]�df��,�df�� = 0. 

Theorem 3. Let � be a diagonal matrix with elements [�]:: = −`/(���VC )� and [�]�df��,�df�� = 0. We also define �� as the 
inverse of *c Ddfwith the last row and column removed. Then, 

�LK̅��"� = 1�KK�� ���� ��*c �dfC
�"� + ��� ����KK − (��)KK,

where � = *c Ddf + y, ��� = 0b�@ �#����,…,����
j� and � = 0b�@(����� l*odflDo ���G��C ; 0). The proof can be found in 
[5]. □
 We calculate 

l*c QdflDo  by performing the standard chain rule,
where each set is normalized to a unit hypersphere: 

*%(�)(�, �) ← *%(�)(�, �)
�*%(�)(�, �)*%(�)(�, �).

Normalization is critical to prevent kernel values from growing 
out of control. We can now create an algorithm with the 
derivative of �NOKP� �"⁄  by alternating between (1) fixing �
and solving for ", and (2) fixing " and solving for �. 

Algorithm: Adaptive Span Deep Multiple Kernel Learning 
Algorithm
1. Input: "�� and �� ∈ [0,1] for every kernel �
2. for � = 1,2,… do
3.     solve the SVM problem with �(�)("�)
4.     for � = 1,2,… do
5.           "���� ← "�� − �� lj����lDo
6.     end for
7.     if stopping criterion then break
8. end for

VII. EXPERIMENTS  

Multiple kernel learning algorithms have traditionally used 
RBF and polynomial kernels. However, we chose not to use 
these kernels, since our objective based on the proposed 
theorems suggests that we should try to maximize the upper 
bound of the pseudo-dimension of the final kernel to increase
its richness with each successive layer. In fact, it can be shown 
that the sum of RBF kernels has a pseudo-dimension of 1 from 
Lemma 2, [3]. Hence, we use four unique base kernels: a linear 
kernel, an RBF kernel with � = 1, a sigmoid kernel with � = −1 × 10�� and � = 1, and a polynomial kernel with
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� = 1, � = 1, � = 2. We used one set of kernels for each 
layer making the 3-layer Radamacher upper bound of the 
architecture proportional to a large margin feed-forward 
network kernel with 0 = √6 according to Theorem 2. We 
initialize all "�(�) to �&. Moreover, we use gradient descent on 
the span bound for 500 iterations for both shallow and deep
multiple kernel architectures with � fixed to 10 on 22 
standardized UCI datasets. Datasets were randomized and split 
in half, while instances with missing values were excluded.

We show increased accuracy with the incorporation of 
each successive layer by optimizing over the dual objective 
and span bound. There was a larger increase in accuracy with 
the addition of the second layer than with the addition of the 
third. However, the third layer did result in small increases in 
accuracy such as the 2% increase seen in the Ionosphere 
dataset with the span bound.  

The proposed method increases accuracy on a range of 
sample sizes. The experimental results are thus consistent with 
the theorems proposed in section V. Namely, we can avoid 
over-fitting by choosing a small number of base kernels and 
sets of kernels at each layer. Thus, similar to single layer 
kernels, the key to increased accuracy may be to choose a few 
appropriate kernel representations. At the very least, we can 
choose a set of appropriate single layer kernels and then the 
deep architecture can help boost accuracy beyond the single 
layer. 

The method of optimizing over the span bound generally 
performs better than optimizing over the dual objective 
function. The performance difference is significant as the 2-
layer optimized over the span outperforms the 3-layer 
optimized over the dual. These results are consistent with the 

conclusions in Section VI that using a tighter upper bound on 
the generalization performance can help offset the increased 
kernel complexity with each subsequent layer. 

VIII. CONCLUSION  
 We have developed a new method to successfully optimize 
multiple, complete layers of kernels while increasing 
generalization performance on a variety of datasets. The 
method works by combining multiple kernels within each 
layer to increase the richness of representations and then by 
optimizing over a tight upper bound of the leave-one-out error.  
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Dual Span
Dataset n/d n 1-Layer Zhuang 2-Layer 3-Layer 1-Layer 2-Layer 3-Layer

Arcene 0.01 100 83.00 80.00 83.00 83.00 84.00 83.00 83.00
Musk1 1.43 238 94.12 94.96 94.96 95.38 94.96 95.80 95.80
Sonar 1.73 104 89.42 88.46 89.42 89.42 88.46 90.38 89.42
Indian Liver 2.90 290 65.52 68.97 66.55 67.24 68.38 70.34 70.69
Zoo 3.19 51 92.16 92.16 92.16 92.16 94.12 92.16 92.16
Ionosphere 5.18 176 90.91 91.48 93.75 94.32 90.91 92.61 94.89
Post-Operative 5.38 43 55.81 65.12 55.81 60.47 55.81 55.81 55.81
Audiology 7.71 54 56.60 54.72 54.72 50.94 52.83 54.72 54.72
Glass2 9.00 81 69.14 70.37 67.90 70.37 71.60 75.31 75.31
Corral 10.67 64 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cleve 12.17 146 73.29 73.97 74.66 74.66 70.55 73.29 73.29
Congress 13.63 218 94.95 94.04 94.95 94.95 94.04 94.95 94.95
Credit 21.80 327 81.96 83.49 82.26 84.40 84.40 84.40 84.40
Australian 24.64 345 80.29 81.45 82.03 81.45 82.32 82.32 82.32
German 25.00 500 69.60 70.80 71.20 69.40 68.40 69.60 69.40
3of9 28.44 256 99.61 98.83 99.22 99.22 98.83 99.22 99.22
Liver 28.67 173 67.05 68.21 70.52 71.68 70.52 71.10 70.52
Monk3 36.00 216 64.35 64.81 64.81 69.44 68.98 69.44 69.44
Breast Cancer 38.11 343 97.67 98.54 97.96 98.54 97.67 97.96 97.96
Pima Indians 48.00 384 70.57 76.56 77.10 76.82 78.65 77.10 77.60
Tic-Tac-Toe 53.22 479 95.40 92.07 92.90 91.44 87.89 92.90 92.90
Balance Scale 72.00 288 98.61 98.26 98.61 98.61 99.65 98.96 98.96
Rank 3.18 2.73 2.50 2.32 2.64 1.91 1.82
p-value 0.022 0.018 0.083 0.340 0.047 1.000

                            Table 1. Percent accuracies after optimizing over the dual objective function or span bound. n/d stands for training sample size over  
                            dimensions; Zhuang for Zhuang et al. (2011). The p-values were obtained by comparing against span 3-layer by paired Wilcoxon  
                            signed-rank test. 
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